Department of Water Affairs Chief Directorate: Resource Directed Measures

COMPREHENSIVE RESERVE DETERMINATION STUDY FOR SELECTED WATER RESOURCES (RIVERS, GROUNDWATER AND WETLANDS) IN THE INKOMATI WATER MANAGEMENT AREA, MPUMALANGA

SABIE-SAND AND CROCODILE SYSTEMS: ECOCLASSIFICATION REPORT – VOLUME 2

DECEMBER 2009

PREPARED BY: Rivers for Africa eFlows Consulting PO Box 1684 Derdepark Pretoria 0053

DWA Project No: WP 9133 Report No: 26/8/3/10/12/009

Reports as part of this project:

Report no	Report title
26/8/3/10/14/001	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Inception report
26/8/3/10/14/002	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Desktop EcoClassification report
26/8/3/10/14/003	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Newsletters
26/8/3/10/14/004	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Basic Human Needs Reserve report
26/8/3/10/14/005	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Groundwater report
26/8/3/10/14/006	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Resource Unit report
26/8/3/10/14/007	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Desktop Estimation report
26/8/3/10/14/008	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: EcoClassification report
26/8/3/10/14/009	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: EWR scenario report
26/8/3/10/14/010	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Ecological, Goods & Services and Socio-Economic consequences of various Operational Scenarios.
26/8/3/10/14/011	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: EcoSpecs report
26/8/3/10/14/012	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Socio Economic Present State Evaluation Report
26/8/3/10/14/013	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Training audit and report
26/8/3/10/14/014	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Main report
26/8/3/10/14/015	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Wetland report
26/8/3/10/14/016	Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: Electronic information and data

Bold indicates this report

REFERENCES

This report is to be referred in bibliographies as:

Department of Water Affairs, South Africa. 2009. Comprehensive Reserve Determination Study for Selected Water Resources (Rivers, Groundwater and Wetlands) in the Inkomati Water Management Area, Mpumalanga. Sabie and Crocodile Systems: EcoClassification Report - Volume 2. Prepared by Water for Africa, edited by Louw, MD and Koekemoer, S. RDM Report no 26/8/3/10/12/009.

AKNOWLEDGEMENTS

Dr Neels Kleynhans, DWAF: RQS, for providing methods and approaches, review, and guidance.

Contributors to the report and specialist meeting:

Dr Deacon, Andrew (Fish) Ms Koekemoer, Shael (Diatoms and Editing) Dr Kleynhans, Neels (Fish and EcoClassification specialist) Dr Kotze, Piet (Fish and report review) Ms Louw, Delana (IHI & process facilitator) Mr Mackenzie, James (Riparian vegetation) Mr Mallory, Stephen (System Hydrology) Mr Rountree, Mark (Fluvial Geomorphology) Dr Scherman, Patsy (Physico-chemical variables) Ms Singh, Adhishri (Report review) Ms Thirion, Christa (Macroinvertebrates) Ms Todd, Colleen (Macroinvertebrates) Dr Uys, Mandy (Macroinvertebrates) Ms Vos, Petro (Macroinvertebrates)

Trainees:

The following trainees participated in the workshop: Mr de Castro, Tony (Riparian vegetation) Dr Dickens, Chris (Physico-chemical variables) Mr Niehaus, Brenton (Macroinvertebrates) Mr Senoge, Ntaki (Macroinvertebrates) Dr Wepener, Victor (Physico-chemical variables)

LIST OF APPENDICES

APPENDIX A	Hydrology Specialist Report and Water Resources of the Mokolo System (DA Hughes and S Mallory)
APPENDIX B	IHI (D Louw)
APPENDIX C	Water Quality Specialist Report (PA Scherman)
APPENDIX D	Diatom Assessment (S Koekemoer and JC Taylor)
APPENDIX E	Geomorphology Specialist Report (M Rountree)
APPENDIX F	Fish Specialist Report (P Kotze and A Deacon)
APPENDIX G	Aquatic Macroinvertebrate Specialist Report (C Thirion, C Todd, M Uys and P
	Vos)
APPENDIX H	Riparian Vegetation Specialist Report (J Mackenzie)
APPENDIX I	EcoStatus Models (Provided electronically)
APPENDIX J	Component Assessment Indices (Provided electronically)

TABLE OF CONTENTS

REFER	RENCES			i
AKNO	WLEDGE	MENTS		ii
ABBR	EVIATION	S AND AC	RONYMS	XXV
A1	HYDRO	LOGY OF	THE CROCODILE-EAST AND SABIE RIVERS CATCHMENT	2
	A1.1	INTRODU	JCTION	2
	A1.2	DWAF ST	FREAMFLOW GAUGES	2
	A1.3	PRESEN	T DAY HYDROLOGICAL IMPACTS	3
		A1.3.1	HAI for CE1 – EWR 1: Valyspruit (Crocodile River)	3
		A1.3.2	HAI for CE2 – EWR 2: Goedenhoop (Crocodile River)	4
		A1.3.3	HAI for CE3 – EWR 3: Poplar Creek (Crocodile River)	5
		A1.3.4	HAI for CE4 – EWR 4: KaNyamazane (Crocodile River)	6
		A1.3.5	HAI for CE5 – EWR 5: Malelane (Crocodile River)	7
		A1.3.6	HAI for CE6 – EWR 6: Nkongoma (Crocodile River)	8
		A1.3.7	HAI for CE7 – EWR 7: Honeybird (Kaap River)	9
		A1.3.8	HAI for SB1 – EWR 1: Upper Sabie (Sabie River)	10
		A1.3.9	HAI for SB2 – EWR 2: Aan de Vliet (Sabie River)	11
		A1.3.10	HAI for SB3 – EWR 3: Kidney (Sabie River)	12
		A1.3.11	HAI for SB4 – EWR 4: Mac Mac (Mac Mac River)	13
		A1.3.12	HAI for SB5 – EWR 5: Marite (Marite River)	14
		A1.3.13	HAI for SB6 – EWR 6: Mutlumuvi (Mutlumuvi River)	15
		A1.3.14	HAI for SB7 – EWR 7: Tlulandziteka (Tlulandziteka River)	16
		A1.3.15	HAI for SB8 – EWR 8: Sand (Sand River)	17
	A1.4	OBSERV	ED FLOW DATA	18
	A1.5	RANGE (OF BASE FLOWS	19
A2	HYDRO	LOGY AN	D WATER RESOURCES OF THE MOKOLO CATCHMENT	20
	A2.1	CROCOD	DILE RIVER SYSTEM	20
	A2.2	SABIE RI	VER SYSTEM	28
A3	HYDRO	LOGICAL	CAUSES AND SOURCES UPSTREAM OF EWR SITES IN	I THE
	CROCO	CILE AND	SABIE SYSTEM	38
B1	SABIE-	SAND AND	O CROCODILE SYSTEMS IHI	41

	B1.1	DATA AVAILABILITY	41
	B1.2	REFERENCE CONDITION	41
B2	CROCO	DDILE RIVER IHI	
	B2.1	MRU CROC A: EWR 1 AND 2	
	B2.2	MRU CROC B: EWR 3	
	B2.3	MRU CROC RAU D.1: EWR 4	
	B2.4	MRU CROC E: EWR 5	45
	B2.5	MRU CROC E: EWR 6	
	B2.6	MRU KAAP RAU A.1: EWR 7	
	B2.7	CROCODILE RIVER INSTREAM IHI SUMMARY	
	B2.8	CROCODILE RIVER RIPARIAN IHI SUMMARY	
B 3	SABIE	– SAND RIVER IHI	54
	B3.1	MRU SABIE A: EWR 1	54
	B3.2	MRU SABIE RAU A.2: EWR 2	55
	B3.3	MRU SABIE RAU B.1: EWR 3	
	B3.4	MRU MACMAC: EWR 4	
	B3.5	MRU MARITE: EWR 5	57
	B3.6	MRU MUTLUMUVI: EWR 6	58
	B3.7	MRU TLULANDIZEKA A: EWR 7	59
	B3.8	MRU SAND RAU B.1: EWR 8	60
	B3.9	SABIE – SAND INSTREAM IHI SUMMARY	61
	B3.10	SABIE - SAND RIPARIAN IHI SUMMARY	64
B4	REFER	ENCES	67
C1	INTRO	DUCTION	69
	C1.1	CATCHMENT CONTEXT	
	C1.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area	
	C1.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area	69 69 70
	C1.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area	
C2	C1.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DDS AND APPROACH	
C2	C1.1 METHC C2.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION	
C2	C1.1 METHC C2.1 C2.2	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT	
C2	C1.1 METHC C2.1 C2.2	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods	
C2	C1.1 METHC C2.1 C2.2	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1:	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER)	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources E VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT. C2.2.1 Methods. C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER). DATA AVAILABILITY REFERENCE CONDITIONS. PRESENT ECOLOGICAL STATE. C3.3.1 PES causes and sources.	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND	
C2 C3	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.5	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.4 C3.5 EWR 2:	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.5 EWR 2: C4.1	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.4 C3.5 EWR 2: C4.1 C4.2	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT. C2.2.1 Methods C2.2.2 Data sources E VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE. C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C E GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL CATEGORY (AEC): B/C E GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.5 EWR 2: C4.1 C4.2 C4.3	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.4 C3.5 EWR 2: C4.1 C4.2 C4.3	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C EGOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C4.3.1 PES causes and sources TEND	
C2 C3 C4	C1.1 METHC C2.1 C2.2 EWR 1: C3.1 C3.2 C3.3 C3.4 C3.5 EWR 2: C4.1 C4.2 C4.3 C4.4	CATCHMENT CONTEXT C1.1.1 Crocodile River sub-area C1.1.2 Sabie River sub-area C1.1.3 Sand River sub-area DS AND APPROACH DATA SELECTION WATER QUALITY ASSESSMENT C2.2.1 Methods C2.2.2 Data sources VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE. C3.3.1 PES causes and sources TREND ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY. REFERENCE CONDITIONS RESULTS C4.3.1 PES causes and sources TREND C4.3.1 PES causes and sources TREND	

C5	EWR 3	: POPLAR CREEK (CROCODILE RIVER)	83
	C5.1	DATA AVAILABILITY	
	C5.2	REFERENCE CONDITIONS	
	C5.3	RESULTS	
		C5.3.1 PES causes and sources	
	C5.4	TREND	
	C5.5	RECOMMENDED ECOLOGICAL CATEGORY (REC): B	
	C5.6	AEC: C/D	
C6	EWR 4	: KANYAMAZANE (CROCODILE RIVER)	
	C6.1	DATA AVAILABILITY	
	C6.2	REFERENCE CONDITIONS	
	C6.3	RESULTS	
		C6.3.1 PES causes and sources	
	C6.4	TREND	
	C6.5	REC: B	
	C6.6	AEC: C/D	
C7	EWR 5	: MALALANE (CROCODILE RIVER)	
	C7.1	DATA AVAILABILITY	
	C7.2	REFERENCE CONDITIONS	
	C7.3	RESULTS	
		C7.3.1 PES causes and sources	
	C7.4	TREND	91
	C7.5	REC: B	91
	C7.6	AEC: D	91
C8	EWR 6	: NKONGOMA (CROCODILE RIVER)	92
	C8.1	DATA AVAILABILITY	92
	C8.2	REFERENCE CONDITIONS	92
	C8.3	RESULTS	
	_	C8.3.1 PES causes and sources	93
	C8.4	TREND	94
	C8.5	REC: B	
	C8.6	AEC: D	
C9	EWR 7	: (KAAP RIVER) – HONEYBIRD	
	C9.1		
	C9.2	REFERENCE CONDITIONS	
	C9.3		
	00.4	C9.3.1 PES causes and sources	
	C9.4	IREND	
	C9.5		
• • •	C9.6		
C10	EWR 1		
	C10.1		
	C10.2		
	C10.3		
	040.4	U10.3.1 PES causes and sources	
	C10.4		
	C10.5	KEU: B	

	C10.6	AEC: C/D	100
C11	EWR 2 :	: AAN DE VLIET (SABIE RIVER)	101
	C11.1	DATA AVAILABILITY	101
	C11.2	REFERENCE CONDITIONS	101
	C11.3	RESULTS	101
		C11.3.1 PES causes and sources	102
	C11.4	TREND	103
	C11.5	REC: B	103
	C11.6	AEC: C/D	103
C12	EWR 3:	: KIDNEY (SABIE RIVER)	104
	C12.1	DATA AVAILABILITY	104
	C12.2	REFERENCE CONDITIONS	104
	C12.3	RESULTS	104
		C12.3.1 PES causes and sources	105
	C12.4	TREND	106
	C12.5	AEC: B/C	106
C13	EWR 4:	: MAC MAC (MAC MAC RIVER)	107
	C13.1	DATA AVAILABILITY	107
	C13.2	REFERENCE CONDITIONS	107
	C13.3	RESULTS	107
		C13.3.1 PES causes and sources	108
	C13.4	TREND	108
	C13.5	REC: A/B	109
~	C13.6		109
C14	EWR 5:		110
	C14.1		110
	C14.2		110
	C14.3	RESULIS	110
			111
	C14 4	C14.3.1 PES causes and sources	111
	C14.4	C14.3.1 PES causes and sources TREND	111 112
	C14.4 C14.5 C14.6	C14.3.1 PES causes and sources TREND REC: B	111 112 112 .112
C15	C14.4 C14.5 C14.6 EWR 6	C14.3.1 PES causes and sources TREND REC: B AEC: C/D	111 112 112 112 112
C15	C14.4 C14.5 C14.6 EWR 6 : C15.1	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER)	111 112 112 112 112 113
C15	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS	111 112 112 112 113 113
C15	C14.4 C14.5 C14.6 EWR 6 : C15.1 C15.2 C15.3	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS RESULTS	111 112 112 112 113 113 113
C15	C14.4 C14.5 C14.6 EWR 6 : C15.1 C15.2 C15.3	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS RESULTS C15.3.1 PES causes and sources	111 112 112 112 113 113 113 113
C15	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS RESULTS C15.3.1 PES causes and sources TREND	111 112 112 112 113 113 113 113 114 114
C15	C14.4 C14.5 C14.6 EWR 6 : C15.1 C15.2 C15.3 C15.4 C15.5	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources. TREND REC: B	111 112 112 112 113 113 113 114 114 115
C15	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources. TREND REC: B AEC: C/D	111 112 112 112 113 113 113 113 114 114 115 115
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7 :	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources. TREND REC: B AEC: C/D TLULANDZITEKA (TLULANDZITEKA RIVER)	111 112 112 112 113 113 113 113 114 114 115 115 116
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7 : C16.1	C14.3.1 PES causes and sources TREND REC: B	111 112 112 112 113 113 113 113 114 114 115 115 115 116
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7: C16.1 C16.2	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources. TREND REC: B AEC: C/D TLULANDZITEKA (TLULANDZITEKA RIVER) DATA AVAILABILITY REFERENCE CONDITIONS.	111 112 112 112 113 113 113 113 114 114 115 115 116 116
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7: C16.1 C16.2 C16.3	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources TREND REC: B AEC: C/D TLULANDZITEKA (TLULANDZITEKA RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES CAUSES AND SOURCES. REFERENCE CONDITIONS. REFERENCE CONDITIONS. RESULTS	111 112 112 112 113 113 113 113 113 114 114 115 115 116 116 116
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7: C16.1 C16.2 C16.3	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C15.3.1 PES causes and sources. TREND REC: B AEC: C/D TLULANDZITEKA (TLULANDZITEKA RIVER) DATA AVAILABILITY REFERENCE CONDITIONS. RESULTS C16.3.1 PES causes and sources.	111 112 112 112 113 113 113 113 113 114 114 115 115 116 116 117
C15 C16	C14.4 C14.5 C14.6 EWR 6: C15.1 C15.2 C15.3 C15.4 C15.5 C15.6 EWR 7: C16.1 C16.2 C16.3 C16.4	C14.3.1 PES causes and sources TREND REC: B AEC: C/D MUTLUMUVI (MUTLUMUVI RIVER) DATA AVAILABILITY REFERENCE CONDITIONS RESULTS C15.3.1 PES causes and sources. TREND REC: B AEC: C/D TLULANDZITEKA (TLULANDZITEKA RIVER) DATA AVAILABILITY REFERENCE CONDITIONS RESULTS C16.3.1 PES causes and sources. TREND	111 112 112 112 113 113 113 113 113 114 114 115 115 116 116 117 117

	C16.6	AEC: D		. 118
C17	EWR 8:	LOWER S	AND (SAND RIVER)	.119
	C17.1	DATA AVA	AILABILITY	. 119
	C17.2	REFEREN	ICE CONDITIONS	. 119
	C17.3	RESULTS		. 119
		C17.3.1	PES causes and sources	. 120
	C17.4	TREND		. 120
	C17.5	AEC: C		. 121
C18	REFERE	INCES		. 122
D1	BACKG	ROUND AN	ND TERMINOLOGY	. 125
	D1.1	BACKGRO	DUND	. 125
	D1.2	TERMINO	LOGY	. 126
D2	METHO	DS		. 127
	D2.1	SAMPLIN	G	. 127
	D2.2	ANALYSIS	S	. 127
	D2.3	DIATOM E	BASED WATER QUALITY SCORES	. 127
D3	RESULT	S: CROCO	DDILE RIVER SYSTEM	. 129
	D3.1	SAMPLIN	G SITES	. 129
	D3.2	DIATOM A	ASSEMBLAGE	. 129
	D3.3	SPI SCOR	RES	. 132
	D3.4	DISCUSS	ION	. 133
		D3.4.1	EWR 1: Valyspruit	. 133
		D3.4.2	EWR 2: Goedehoop	. 134
		D3.4.3	EWR 3: Poplar Creek	. 135
		D3.4.4	EWR 4: KaNyamazane	. 135
		D3.4.5	EWR 5: Malelane	. 136
		D3.4.6	EWR 6: Nkongoma	. 137
		D3.4.7	EWR 7: Honeybird	. 138
D4	RESULI	S: SABIE	- SAND RIVER SYSTEM	. 139
	D4.1	SAMPLIN	G SITES	. 139
	D4.2	DIATOM A	ASSEMBLAGE	. 139
	D4.3	SPI SCOR	RES	. 142
	D4.4	DISCUSS	ION	. 143
		D4.4.1	EWR 1: Upper Sabie	. 143
		D4.4.2	EWR 2: Aan de Vliet	. 144
		D4.4.3	EWR 3: Kidney	. 144
		D4.4.4	EWR 4: Mac Mac	. 145
		D4.4.5	EWR 5: Marite	. 145
		D4.4.6	EWR 6: Mutlumuvi	. 146
		D4.4.7	EWR /: Hulandziteka	. 147
55	D	D4.4.8	EVVR 8: Sand	. 147
D5	REFERE			. 149
E1	EWR 1:	VALEYSPI		.153
	E1.1	DATAAVA		. 153
	E1.2	KEFEKEN		. 153
	E1.3	PRESENT		.154
		⊏1.3.1	Site suitability	. 154

		E1.3.2	PES causes and sources	154
	E1.4	TREND		154
	E1.5	REC: A/B		155
	E1.6	AEC: B/C		155
E2	EWR 2 :	GOEDEHO	DOP (CROCODILE RIVER)	156
	E2.1	DATA AV	AILABILITY	156
	E2.2	REFEREN	ICE CONDITIONS	156
	E2.3	PRESENT	FECOLOGICAL STATE	157
		E2.3.1	Site suitability	157
		E2.3.2	PES: Causes and sources	157
	E2.4	TREND		157
	E2.5	REC: B		157
	E2.6	AEC: C		158
E3	EWR 3:	POPLAR (CREEK (CROCODILE RIVER)	159
	E3.1	DATA AV	AILABILITY	159
	E3.2	REFEREN	ICE CONDITIONS	159
	E3.3	PRESENT	FECOLOGICAL STATE	160
		E3.3.1	Site suitability	160
		E3.3.2	PES causes and sources	160
	E3.4	TREND		160
	E3.5	REC: B		161
	E3.6	AEC: C/D		161
E4	EWR 4:	KANYAMA	AZANE (CROCODILE RIVER)	162
	E4.1	DATA AV	AILABILITY	162
	E4.2	REFEREN		162
	E4.3	PRESENT	FECOLOGICAL STATE	163
		E4.3.1	Site suitability	163
		E4.3.2	PES causes and sources	164
	E4.4	IREND		164
	E4.5	REC: B		164
	E4.6	AEC: C/D		164
E5	EWR 5:		IE (CROCODILE RIVER)	165
	E5.1			165
	E5.2	REFEREN		165
	E5.3	PRESENT		166
		E5.3.1		166
			PES causes and sources	. 166
	E3.4			107
	E0.0			. 107
EC				107
EO				168
	E6 1	REEDEN		162
	E0.1 E6.2			162
	LU.Z		Site suitability	162
		E0.2.1	PES causes and sources	160
	F6.3			. 169
	-0.0			

	E6.4	REC: B	
	E6.5	AEC: D	
E7	EWR 7	HONEYBIRD (KAAP RIVER)	
	E7.1	DATA AVAILABILITY	
	E7.2	REFERENCE CONDITIONS	
	E7.3	PRESENT ECOLOGICAL STATE	
		E7.3.1 Site suitability	
		E7.3.2 PES causes and source	ces
	E7.4	TREND	
	E7.5	REC: B	
	E7.6	AFC: D	173
E8	EWR 1	UPPER SABIE (SABIE RIVER)	
_•	E8 1		174
	E8.1	REFERENCE CONDITIONS	174
	E8.3		
	20.0	F8.3.1 Site suitability	175
		E8.3.2 PES causes and sour	
	F8 /		175
			176
	E8.6		
EO			
LJ			
	E0.3		
	E9.3	EQ 2.1 Site quitability	
		E9.3.1 Site Suitability	
			.es
	E9.4		
	E9.0		
E10			
EIU		NIDNET (SABIE RIVER)	
	E10.1		
	E10.2	REFERENCE CONDITIONS	
	E10.3	PRESENT ECOLOGICAL STATE	
		E10.3.1 Site suitability	
	F 4 6 4	E10.3.2 PES causes and sour	ces
	E10.4		
	E10.5	AEC: B/C	
E11	EWR 4	MAC MAC (MAC MAC RIVER)	
	E11.1	DATA AVAILABILITY	
	E11.2	REFERENCE CONDITIONS	
	E11.3	PRESENT ECOLOGICAL STATE	
		E11.3.1 Site suitability	
		E11.3.2 PES causes and sour	ces184
	E11.4	TREND	
	E11.5	AEC: C	
E12	EWR 5	MARITE (MARITE RIVER)	
	E12.1	DATA AVAILABILITY	

	E12.2	REFEREN	CE CONDITIONS	186
	E12.3	PRESENT	ECOLOGICAL STATE	186
		E12.3.1	Site suitability	186
		E12.3.2	PES causes and sources	187
	E12.4	TREND		187
	E12.5	REC: B		187
	E12.6	AEC: C/D		187
E13	EWR 6:	MUTLUMU	VI (MUTLUMUVI RIVER)	188
	E13.1	DATA AVA	ILABILITY	188
	E13.2	REFEREN	CE CONDITIONS	188
	E13.3	PRESENT	ECOLOGICAL STATE	189
		E13.3.1	Site suitability	189
		E13.3.2	PES causes and sources	189
	E13.4	TREND		189
	E13.5	REC: B		189
	E13.6	AEC: C/D		190
E14	EWR 7:	TLULANDZ	ITEKA (TLULANDZITEKA RIVER)	191
	E14.1	DATA AVA	ILABILITY	191
	E14.2	REFEREN	CE CONDITIONS	191
	E14.3	PRESENT	ECOLOGICAL STATE	191
		E14.3.1	Site suitability	191
		E14.3.2	PES causes and sources	192
	E14.4	TREND		192
	E14.5	AEC: B		192
	E14.6	AEC: D		192
E15	EWR 8:	LOWER SA	ND (SAND RIVER)	193
	E15.1	DATA AVA		193
	E15.2	REFEREN		193
	E15.3	PRESENT	ECOLOGICAL STATE	194
		E15.3.1	Site suitability	194
		E15.3.2	PES causes and sources	194
	E15.4	TREND		194
= 4 0	E15.5			195
E16	REFERE			196
F1	EWR 1:		UII (CROCODILE RIVER)	198
	F1.1			198
	F1.2	REFEREN	CE CONDITIONS	198
	F4 0			198
	F1.3	PRESENT		198
		F1.3.1		198
		F1.3.2	PES causes and sources	199
				199
E0	F1.3			199
۲ ۷			UF (URUUUULE RIVER)	200
	r∠.1 F2.2			200 200
	F2 2			200
	FZ.J	FRESENT		200

		F2.3.1	Site suitability	
		F2.3.2	PES causes and sources	
	F2.4	TREND		
	F2.5	AEC: C		
F3	EWR 3	: POPLAR	CREEK (CROCODILE RIVER)	
	F3.1	DATA AV	AILABILITY	
	F3.2	REFERE	NCE CONDITIONS	
	F3.3	PRESEN	T ECOLOGICAL STATE	
		F3.3.1	Site suitability	
		F3.3.2	PES causes and sources	
	F3.4	TREND		
	F3.5	REC: B		
	F3.6	AEC: C/D)	
F4	EWR 4	: KANYAM	AZANE (CROCODILE RIVER)	
	F4.1	DATA AV	AILABILITY	
	F4.2	REFERE	NCE CONDITIONS	
	F4.3	PRESEN	T ECOLOGICAL STATE	
		F4.3.1	Site suitability	
		F4.3.2	PES causes and sources	
	F4.4	TREND		
	F4.5	REC: B		
	F4.6	AEC: C/D)	
F5	EWR 5	: MALALAI	NE (CROCODILE RIVER)	
	F5.1	DATA AV	AILABILITY	
	F5.2	REFERE	NCE CONDITIONS	
	F5.3	PRESEN	T ECOLOGICAL STATE	
		F5.3.1	Site suitability	
		F5.3.2	PES causes and sources	
	F5.4	TREND		
	F5.5	REC: B		
	F5.6	AEC: D		
F6	EWR 6	: NKONGO	MA (CROCODILE RIVER)	
	F6.1	DATA AV	AILABILITY	
	F6.2	REFERE	NCE CONDITIONS	
	F6.3	PRESEN	T ECOLOGICAL STATE	
		F6.3.1	Site suitability	210
		F6.3.2	PES causes and sources	
	F6.4	TREND		
	F6.5	REC: B		
	F6.6	AEC: D		
F7	EWR 7	: HONEYB	RD (KAAP RIVER)	
	F7.1	DATA AV	AILABILITY	
	F7.2	REFERE	NCE CONDITIONS	212
	F7.3	PRESEN	T ECOLOGICAL STATE	212
		F7.3.1	Site suitability	213
		F7.3.2	PES causes and sources	213
	F7.4	TREND		

	F7.5	REC: B	213
	F7.6	AEC: D	213
F8	EWR 1:	UPPER SABIE (SABIE RIVER)	
	F8.1		214
	F8.2	REFERENCE CONDITIONS	214
	F8.3	PRESENT ECOLOGICAL STATE	214
		F8.3.1 Site suitability	214
		F8.3.2 PES causes and sources	215
	F8.4	TREND	215
	F8.5	REC: B	215
	F8.6	AEC: C/D	215
F9	EWR 2:	AAN DE VLIET (SABIE RIVER)	
	F9.1		216
	F9.2	REFERENCE CONDITIONS	
	F9.3	PRESENT ECOLOGICAL STATE	217
		F9.3.1 Site suitability	217
		F9.3.2 PES causes and sources	217
	F9.4	TREND	217
	F9.5	REC: B	217
	F9.6	AEC: C/D	218
F10	EWR 3:	KIDNEY (SABIE RIVER)	
	F10.1	DATA AVAILABILITY	219
	F10.2	REFERENCE CONDITIONS	219
	F10.3	PRESENT ECOLOGICAL STATE	
		F10.3.1 Site suitability	
		F10.3.2 PES causes and sources	
	F10.4	TREND	
	F10.5	AEC: B/C	
F11	EWR 4:	MAC MAC (MAC MAC RIVER)	
	F11.1	DATA AVAILABILITY	
	F11.2	REFERENCE CONDITIONS	
	F11.3	PRESENT ECOLOGICAL STATE	223
		F11.3.1 Site suitability	223
		F11.3.2 PES causes and sources	223
	F11.4	TREND	223
	F11.5	REC: A/B	
	F11.6	AEC: C	223
F12	EWR 5:	MARITE (MARITE RIVER)	
	F12.1	DATA AVAILABILITY	224
	F12.2	REFERENCE CONDITIONS	
	F12.3	PRESENT ECOLOGICAL STATE	225
		F12.3.1 Site suitability	
		F12.3.2 PES causes and sources	
	F12.4	TREND	
	F12.5	REC: B	
	F12.6	AEC: C/D	
F13	EWR 6:	MUTLUMUVI (MUTLUMUVI RIVER)	

	F13 1	DATA AVAILABILITY	227
	F13.2	REFERENCE CONDITIONS	227
	F13.3	PRESENT ECOLOGICAL STATE	228
	1 10.0	F13.3.1 Site suitability	228
		F13.3.2 PES causes and sources	228
	F13.4	TREND	228
	F13.5	REC: B	220
	F13.6	AFC: C/D	229
F14	FWR 7	· TI UI ANDZITEKA (TI UI ANDZITEKA RIVER)	230
1 14	F14 1		230
	F14.2	REFERENCE CONDITIONS	230
	F14.3	PRESENT ECOLOGICAL STATE	231
	1 1 1.0	F14.3.1 Site suitability	231
		F14.3.2 PES causes and sources	231
	F14 4	TREND	231
	F14.5	AFC: B	232
	F14.6	AFC: D	232
F15	FWR 8	· LOWER SAND (SAND RIVER)	233
1 10	E15 1		233
	F15.2	REFERENCE CONDITIONS	233
	F15.3		234
	1 10.0	F15.3.1 Site suitability	234
		F15.3.2 PES causes and sources	234
	F15 4	TREND	234
	F15.5	AFC: C	235
F16	REFER		
G1			
91	EWR 1:	: VALEYSPRUIT (CROCODILE RIVER)	
01	EWR 1 : G1.1	DATA AVAILABILITY	 238
01	EWR 1 : G1.1 G1.2	DATA AVAILABILITY	
01	EWR 1 : G1.1 G1.2 G1.3	EVALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE	
01	EWR 1 : G1.1 G1.2 G1.3	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE	
	EWR 1: G1.1 G1.2 G1.3 G1.4	: VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238
01	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C	238 238 238 238 238 238 238
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2:	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER)	238 238 238 238 238 238 238 238 238
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY	238 238 238 238 238 238 238 238 238 240
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS	238 238 238 238 238 238 238 238 240 240 240
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE	238 238 238 238 238 238 238 238 240 240 240 240
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3	 VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238 238 238 240 240 240 240 240
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G2.3.1 PES causes and sources TREND	238 238 238 238 238 238 238 238 240 240 240 240 240 240 240
G2	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY	238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 240
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3:	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G2.3.1 PES causes and sources TREND AEC: C : POPLAR CREEK (CROCODILE RIVER)	238 238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 240 240 240
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3: G3.1	: VALEYSPRUIT (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G1.3.1 PES causes and sources TREND AEC: B/C : GOEDEHOOP (CROCODILE RIVER) DATA AVAILABILITY REFERENCE CONDITIONS PRESENT ECOLOGICAL STATE G2.3.1 PES causes and sources TREND AEC: C : POPLAR CREEK (CROCODILE RIVER)	238 238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 240 240 240 240 240 240
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3: G3.1 G3.2	 VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 240 242 242 242
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3: G3.1 G3.2 G3.3	 VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 242 242 242 242
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3: G3.1 G3.2 G3.3	 VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 240 240 240 242 242 242 242 242
G2 G3	EWR 1: G1.1 G1.2 G1.3 G1.4 G1.5 EWR 2: G2.1 G2.2 G2.3 G2.4 G2.5 EWR 3: G3.1 G3.2 G3.3	 VALEYSPRUIT (CROCODILE RIVER)	238 238 238 238 238 238 238 238 238 240 240 240 240 240 240 240 242 242 242 242 242 242

	G3.5	REC: B	
	G3.6	AEC: C/D	
G4	EWR 4	4: KANYAMAZANE (CROCODILE RIVER)	
	G4.1	DATA AVAILABILITY	
	G4.2	REFERENCE CONDITIONS	
	G4.3	PRESENT ECOLOGICAL STATE	
		G4.3.1 Site suitability	
		G4.3.2 PES causes and sources	
	G4.4	TREND	
	G4.5	REC: B	
	G4.6	AEC: C/D	
G5	EWR 5	5: MALALANE (CROCODILE RIVER)	246
	G5.1		
	G5.2	REFERENCE CONDITIONS	
	G5.3	PRESENT ECOLOGICAL STATE	
		G5.3.1 Site suitability	
		G5.3.2 PES causes and sources	
	G5.4	TREND	
	G5.5	REC: B	
	G5.6	AEC: D	
G6	EWR 6	6: NKONGOMA (CROCODILE RIVER)	248
	G6.1	DATA AVAILABILITY	
	G6.2	REFERENCE CONDITIONS	
	G6.3	PRESENT ECOLOGICAL STATE	
		G6.3.1 Site suitability	
		G6.3.2 PES causes and sources	
	G6.4	TREND	
	G6.5	REC: B	
	G6.6	AEC: D	
G7	EWR 7	7: HONEYBIRD (KAAP RIVER)	250
	G7.1	DATA AVAILABILITY	250
	G7.2	REFERENCE CONDITIONS	250
	G7.3	PRESENT ECOLOGICAL STATE	250
		G7.3.1 PES causes and sources	250
	G7.4	TREND	250
	G7.5	REC: B	250
	G7.6	AEC: D	251
G8	EWR 1	1: UPPER SABIE (SABIE RIVER)	252
	G8.1	DATA AVAILABILITY	252
	G8.2	REFERENCE CONDITIONS	252
	G8.3	PRESENT ECOLOGICAL STATE	252
		G8.3.1 Site suitability	252
		G8.3.2 PES causes and sources	252
	G8.4	TREND	252
	G8.5	REC: B	253
	G8.6	AEC: C/D	253
G9	EWR 2	2: AAN DE VLIET (SABIE RIVER)	254

	G9.1	DATA AVAILABILITY	. 254
	G9.2	REFERENCE CONDITIONS	. 254
	G9.3	PRESENT ECOLOGICAL STATE	. 254
		G9.3.1 Site suitability	. 254
		G9.3.2 PES causes and sources	. 254
	G9.4	TREND	. 254
	G9.5	REC: B	. 255
	G9.6	AEC: C/D	. 255
G10	EWR 3:	KIDNEY (SABIE RIVER)	. 256
	G10.1	DATA AVAILABILITY	. 256
	G10.2	REFERENCE CONDITIONS	. 256
	G10.3	PRESENT ECOLOGICAL STATE	. 256
		G10.3.1 Site suitability	. 256
		G10.3.2 PES causes and sources	. 256
	G10.4	TREND	. 257
	G10.5	AEC: B/C	. 257
G11	EWR 4:	MAC MAC (MAC MAC RIVER)	. 258
	G11.1	DATA AVAILABILITY	. 258
	G11.2	REFERENCE CONDITIONS	. 258
	G11.3	PRESENT ECOLOGICAL STATE	. 258
		G11.3.1 Site suitability	. 258
		G11.3.2 PES causes and sources	. 258
	G11.4	TREND	. 259
	G11.5	AEC: C	. 259
G12	EWR 5:	MARITE (MARITE RIVER)	. 260
	G12.1	DATA AVAILABILITY	. 260
	G12.2	REFERENCE CONDITIONS	. 260
	G12.3	PRESENT ECOLOGICAL STATE	. 260
		G12.3.1 Site suitability	. 260
		G12.3.2 PES causes and sources	. 260
		G12.3.3 TREND	. 260
	G12.4	REC: B	. 261
	G12.5	AEC: C/D	. 261
G13	EWR 6:	MUTLUMUVI (MUTLUMUVI RIVER)	. 262
	G13.1	DATA AVAILABILITY	. 262
	G13.2	REFERENCE CONDITIONS	. 262
	G13.3	PRESENT ECOLOGICAL STATE	. 262
		G13.3.1 Site suitability	. 262
		G13.3.2 PES causes and sources	. 262
	G13.4	TREND	. 263
	G13.5	REC: B	. 263
	G13.6	AEC: C/D	. 263
G14	EWR 7:	TLULANDZITEKA (TLULANDZITEKA RIVER)	. 264
	G14.1	DATA AVAILABILITY	. 264
	G14.2	REFERENCE CONDITIONS	. 264
	G14.3	PRESENT ECOLOGICAL STATE	. 264
		C14.3.1 Site suitability	264

		G14.3.2	PES causes and sources		
	G14.4	TREND			
	G14.5	AEC: B			
	G14.6	AEC: D			
G15	EWR 8	LOWERS	AND (SAND RIVER)		
	G15.1	DATA AV	AILABILITY		
	G15.2	REFERE	NCE CONDITIONS		
	G15.3	PRESEN	T ECOLOGICAL STATE		
		G15.3.1	Site suitability		
		G15.3.2	PES causes and sources		
	G15.4	TREND			
	G15.5	REC: B			
	G15.6	AEC: C			
G16	REFER	ENCES			
H1	EWR 1	VALEYSP	RUIT (CROCODILE RIVER)		
	H1.1	DATA AV	AILABILITY		
	H1.2	REFERE	NCE CONDITIONS		
	H1.3	PRESEN	T ECOLOGICAL STATE		
		H1.3.1	Site suitability		
		H1.3.2	PES causes and sources		
		H1.3.3	Profile		
	H1.4	TREND			
	H1.5	AEC: B/C			
H2	EWR 2	GOEDEH	OOP (CROCODILE RIVER)		
	H2.1	DATA AV	AILABILITY		
	H2.2	REFERE	NCE CONDITIONS		
	H2.3	PRESEN	T ECOLOGICAL STATE		
		H2.3.1	Site suitability		
		H2.3.2	PES causes and sources		
		H2.3.3	Profile		
	H2.4	TREND			
	H2.5	AEC: C			
H3	EWR 3				
	H3.1				
	H3.2	REFERE			
	H3.3	PRESEN			
		H3.3.1			
		H3.3.2	PES causes and sources		
		H3.3.3	Profile		
	H3.4	IREND			
	H3.5	REC: B			
114					
n 4					
	⊡4.Z				
	F14.3	PRESEN			
		H4.3.1	อแอ อนแสมแแนง		

		H4.3.2	PES causes and sources	
		H4.3.3	Profile	
	H4.4	TREND		
	H4.5	REC: B		
	H4.6	AEC: C/D)	
H5	EWR 5	: MALALAI	NE (CROCODILE RIVER)	
	H5.1	DATA AV	AILABILITY	
	H5.2	REFERE	NCE CONDITIONS	
	H5.3	PRESEN	T ECOLOGICAL STATE	
		H5.3.1	Site suitability	
		H5.3.2	PES causes and sources	
		H5.3.3	Profile	
	H5.4	TREND		
	H5.5	REC: B		
	H5.6	AEC: D		
H6	EWR 6	: NKONGO	MA (CROCODILE RIVER)	
	H6.1	DATA AV	AILABILITY	
	H6.2	REFERE	NCE CONDITIONS	
	H6.3	PRESEN	T ECOLOGICAL STATE	
		H6.3.1	Site suitability	
		H6.3.2	PES causes and sources	
		H6.3.3	Profile	
	H6.4	TREND		
	H6.5	REC:B		
	H6.6	AEC: D		
H7	EWR 7	: HONEYB	IRD (KAAP RIVER)	
	H7.1	DATA AV	AILABILITY	
	H7.2	REFERE	NCE CONDITIONS	
	H7.3	PRESEN	T ECOLOGICAL STATE	
		H7.3.1	Site suitability	
		H7.3.2	PES causes and sources	
		H7.3.3	Profile	
	H7.4	TREND		
	H7.5	REC: B		
	H7.6	AEC: D		
H8	EWR 1	UPPER SA	ABIE (SABIE RIVER)	
	H8.1	DATA AV	AILABILITY	
	H8.2	REFERE	NCE CONDITIONS	
	H8.3	PRESEN	T ECOLOGICAL STATE	
		H8.3.1	Site suitability	
		H8.3.2	PES causes and sources	
		H8.3.3	Profile	
	H8.4	TREND		
	H8.5	REC: B		
	H8.6	AEC: C/D)	
H9	EWR 2	: AAN DE \	/LIET (SABIE RIVER)	
	H9.1	DATA AV	AILABILITY	

	H9.2	REFERENCE CONDITIONS	
	H9.3	PRESENT ECOLOGICAL STATE	
		H9.3.1 Site suitability	
		H9.3.2 PES causes ans sources	
		H9.3.3 Profile	
	H9.4	TREND	
	H9.5	REC: B	
	H9.6	AEC: C/D	
H10	EWR 3	3 KIDNEY (SABIE RIVER)	298
	H10.1	DATA AVAILABILITY	
	H10.2	REFERENCE CONDITIONS	
	H10.3	PRESENT ECOLOGICAL STATE	
		H10.3.1 Site suitability	
		H10.3.2 PES causes and sources	
		H10.3.3 Profile	300
	H10.4	TREND	300
	H10.5	AEC: B/C	300
H11	EWR 4	I MAC MAC (MAC MAC RIVER)	301
	H11.1	DATA AVAILABILITY	301
	H11.2	REFERENCE CONDITIONS	301
	H11.3	PRESENT ECOLOGICAL STATE	301
		H11.3.1 Site suitability	301
		H11.3.2 PES causes and sources	302
		H11.3.3 Profile	303
	H11.4	TREND	303
	H11.5	AEC: C	303
H12	EWR 5	5 MARITE (MARITE RIVER)	304
	H12.1	DATA AVAILABILITY	304
	H12.2	REFERENCE CONDITIONS	304
	H12.3	PRESENT ECOLOGICAL STATE	304
		H12.3.1 Site suitability	304
		H12.3.2 PES causes and sources	305
		H12.3.3 Profile	306
	H12.4	TREND	306
	H12.5	REC: B	306
	H12.6	AEC: C/D	306
H13	EWR 6	6: MUTLUMUVI (MUTLUMUVI RIVER)	307
	H13.1	DATA AVAILABILITY	307
	H13.2	REFERENCE CONDITIONS	307
	H13.3	PRESENT ECOLOGICAL STATE	307
		H13.3.1 Site suitability	307
		H13.3.2 Reasons for PES	308
		H13.3.3 Profile	309
	H13.4	TREND	309
	H13.5	REC: B	309
	H13.6	AEC: C/D	309
H14	EWR 7	7 TLULANDZITEKA (TLULANDZITEKA RIVER)	310

H14.1 DATA AVAILABILITY	
H14.2 REFERENCE CONDITIONS	
H14.3 PRESENT ECOLOGICAL STATE	
H14.3.1 Site suitability	
H14.3.2 PES causes and sources	
H14.3.3 Profile	
H14.4 TREND	
H14.5 AEC: B	
H14.6 AEC: D	
H15 EWR 8 LOWER SAND (SAND RIVER)	
H15.1 DATA AVAILABILITY	
H15.2 REFERENCE CONDITIONS	
H15.3 PRESENT ECOLOGICAL STATE	
H15.3.1 Site suitability	
H15.3.2 PES causes and sources	
H15.3.3 Profile	
H15.4 TREND	
H15.5 AEC: C	
H16 REFERENCES	

LIST OF TABLES

APPENDIX A: HYDROLOGY

Table A1	HAI details for Site CE1
Table A2	HAI details for Site CE24
Table A3	HAI details for Site CE35
Table A4	HAI details for Site CE46
Table A5	HAI details for Site CE58
Table A6	HAI details for Site CE69
Table A7	HAI details for Site CE7 10
Table A8	HAI details for Site SB111
Table A9	HAI details for Site SB212
Table A10	HAI details for Site SB313
Table A11	HAI details for Site SB414
Table A12	HAI details for Site SB515
Table A13	HAI details for Site SB616
Table A14	HAI details for Site SB717
Table A15	HAI details for Site SB818
Table A16	List of available observed flow data19
Table A17	Range of baseflows for the 15 sites 19
Table A18	EWR 1: Valeyspruit (Crocodile River)20
Table A19	EWR 2: Goedehoop (Crocodile River)21
Table A20	EWR 3: Poplar Creek (Crocodile River)
Table A21	EWR 4: Mac Mac (Mac Mac River)23
Table A22	EWR 5: Malelane (Crocodile River)24
Table A23	EWR 6: Nkongoma (Crocodile River)25
Table A24	EWR 7: Honeybird (Kaap River)26

29
30
34
35
36
38
39

APPENDIX B: IHI

Summary of the causes and sources for the change in reference condition for EWR 1
Summary of the causes and sources for the change in reference condition for EWR 3
Summary of the causes and sources for the change in reference condition for EWR 4
Summary of the causes and sources for the change in reference condition for EWR 5
Summary of the causes and sources for the change in reference condition for EWR 6
Summary of the causes and sources for the change in reference condition for EWR 7
Ratings for the each MRU and EWR site – Crocodile system
Ratings for the each MRU and EWR site – Crocodile system
Summary of the causes and sources for the change in reference condition for MRU Sabie A EWR 1
Summary of the causes and sources for the change in reference condition for MRU Sabie RAU A2
Summary of the causes and sources for the change in reference condition for MRU Sabie RUA B.1
Summary of the causes and sources for the change in reference condition for MRU MacMac
Summary of the causes and sources for the change in reference condition for MRU Marite
Summary of the causes and sources for the change in reference condition for EWR 6
Summary of the causes and sources for the change in reference condition for MRU Thulandizeka A (EWR 7)
Summary of the causes and sources for the change in reference condition for MRU Sand RAU B 1
Ratings for the each MRU and EWR site –Sabie - Sand system
Ratings for the each MRU and EWR site –Sabie - Sand system

APPENDIX C: WATER QUALITY SPECIALIST REPORT

Table C1	Inkomati gauging weirs: Crocodile River system	73
Table C2	Inkomati gauging weirs: Kaap River system	73
Table C3	Inkomati gauging weirs: Sabie-Sand River system	74

Table C4	Water quality data used for the EWR assessment74
Table C5	Relationship between categories and ratings (Kleynhans et al., 2005)75
Table C6	On - site water quality data collected during the 2007 field survey77
Table C7	Chlorophyll - a analysis for samples collected from the Inkomati study area
	(Froneman, 2007: periphyton; University of Johannesburg: phytoplankton analysis) 77
Table C8	Diatom assessment for the Inkomati study area (from Appendix D)
Table C9	Water quality table for EWR 179
Table C10	EWR 1: PAI
Table C11	Water quality table for EWR 281
Table C12	EWR 2: PAI
Table C13	Water quality table for EWR 383
Table C14	EWR 3: PAI
Table C15	Water quality table for EWR 486
Table C16	EWR 4: PAI
Table C17	Water quality table for EWR 589
Table C18	EWR 5: PAI
Table C19	Water quality table for EWR 692
Table C20	EWR 6: PAI
Table C21	Water quality table for EWR 795
Table C22	EWR 7: PAI
Table C23	Water quality table for EWR 198
Table C24	EWR 1: PAI
Table C25	Water quality table for EWR 2101
Table C26	EWR 2: PAI
Table C27	Water quality table for EWR 3104
Table C28	EWR 3: PAI
Table C29	Water quality table for EWR 4107
Table C30	EWR 4: PAI
Table C31	Water quality table for EWR 5 110
Table C32	EWR 5: PAI
Table C33	Water quality table for EWR 6 113
Table C34	EWR 6: PAI
Table C35	Water quality table for EWR 7116
Table C36	EWR 7: PAI
Table C37	Water quality table for EWR 8119
Table C38	EWR 8: PAI

APPENDIX D: DIATOM ASSESSMENT

Adjusted class limit boundaries for the SPI index applied in this study	128
Diatom sampling sites	129
Main land use activities in the Resource Units	129
Diatom species assemblage and abundances of samples for each EWR site	130
SPI scores for the different samples	132
Generic diatom based ecological classification	133
Diatom sampling sites	139
	Adjusted class limit boundaries for the SPI index applied in this study Diatom sampling sites Main land use activities in the Resource Units Diatom species assemblage and abundances of samples for each EWR site SPI scores for the different samples Generic diatom based ecological classification Diatom sampling sites

APPENDIX F: FISH SPECIALIST REPORT

Table F1	EWR 1: Reference fish species	198
Table F2	EWR 2: Reference fish species	
Table F3	EWR 3: Reference fish species	
Table F4	EWR 4: Reference fish species	
Table F5	EWR 5: Reference fish species	
Table F6	EWR 6: Reference fish species	
Table F7	EWR 7: Reference fish species	212
Table F8	EWR 1: Reference fish species	214
Table F9	EWR 2: Reference fish species	216
Table F10	EWR 3: Reference fish species	219
Table F11	EWR 4: Reference fish species	
Table F12	EWR 5: Reference fish species	
Table F13	EWR 6: Reference fish species	
Table F 14	EWR 7: Reference fish species	230
Table F 15	EWR 8: Reference fish species	

LIST OF FIGURES

APPENDIX A: HYDROLOGY

Figure A1	EWR sites and quaternary catchments	2
Figure A2	Annual monthly flow duration curves (data 1920 to 2004) for site CE1 (Black Natural, Blue = Present Day)	= 3
Figure A3	Seasonal distributions (data 1920 to 2004) for site CE1 (Black = Natural, Blue Present Day)	= 4
Figure A4	Annual monthly flow duration curves (data 1920 to 2004) for site CE2 (Black Natural, Blue = Present Day)	= 4
Figure A5	Seasonal distributions (data 1920 to 2004) for site CE2 (Black = Natural, Blue Present Day)	= 5
Figure A6	Annual monthly flow duration curves (data 1920 to 2004) for site CE3 (Black Natural, Blue = Present Day)	= 6
Figure A7	Seasonal distributions (data 1920 to 2004) for site CE3 (Black = Natural, Blue Present Day)	= 6
Figure A8	Annual monthly flow duration curves (data 1920 to 2004) for site CE4 (Black Natural, Blue = Present Day)	= 7
Figure A9	Seasonal distributions (data 1920 to 2004) for site CE4 (Black = Natural, Blue Present Day)	= 7
Figure A10	Annual monthly flow duration curves (data 1920 to 2004) for site CE5 (Black Natural, Blue = Present Day)	= 8
Figure A11	Seasonal distributions (data 1920 to 2004) for site CE5 (Black = Natural, Blue Present Day)	= 8
Figure A12	Annual monthly flow duration curves (data 1920 to 2004) for site CE6 (Black Natural, Blue = Present Day)	= 9
Figure A13	Seasonal distributions (data 1920 to 2004) for site CE6 (Black = Natural, Blue Present Day)	=
Figure A14	Annual monthly flow duration curves (data 1920 to 2004) for site CE7 (Black Natural, Blue = Present Day)	= 0

Figure A15	Seasonal distributions (data 1920 to 2004) for site CE7 (Black = Natural, Blue = Present Day)
Figure A16	Annual monthly flow duration curves (data 1920 to 2004) for site SB1 (Black = Natural Blue = Present Day)
Figure A17	Seasonal distributions (data 1920 to 2004) for site SB1 (Black = Natural, Blue = Present Day)
Figure A18	Annual monthly flow duration curves (data 1920 to 2004) for site SB2 (Black =
Figure A 19	Seasonal distributions (data 1920 to 2004) for site SB2 (Black = Natural, Blue =
Figure A20	Annual monthly flow duration curves (data 1920 to 2004) for site SB3 (Black =
Figure A21	Seasonal distributions (data 1920 to 2004) for site SB3 (Black = Natural, Blue =
Figure A22	Annual monthly flow duration curves (data 1920 to 2004) for site SB4 (Black =
Figure A23	Natural, Blue = Present Day)
Figure A24	Annual monthly flow duration curves (data 1920 to 2004) for site SB5 (Black =
Figure A25	Natural, Blue = Present Day)
Figure A26	Present Day)
Figure A27	Natural, Blue = Present Day)
Figure A28	Present Day)
Figure A29	Natural, Blue = Present Day)
	Present Day)
	Natural, Blue = Present Day)
Figure A31	Present Day)
Figure A32	Flow duration curve for EWR 3
Figure A33	Flow duration curve for EWR 4
Figure A34	Flow duration curve for EWR 5
Figure A35	Flow duration curve for EWR 6
Figure A36	Flow duration curve for EWR 7
Figure A37	Flow duration curve for EWR 1
Figure A38	Flow duration graph for EWR 2
Figure A39	Flow duration curve for EWR 3
Figure A40	Flow duration curve for EWR 4
Figure A41	Flow duration curve for EWR 5
Figure A42	Flow duration curve for EWR 6
Figure A43	Flow duration curve for EWR 7
Figure A44	Flow duration curve for EWR 8

APPENDIX C: WATER QUALITY SPECIALIST REPORT

APPENDIX H: RIPARIAN VEGETATION SPECIALIST REPORT

Figure H1	EWR 1: Riparian vegetation survey points used to assess flow requirements 271
Figure H2:	EWR 2: Riparian vegetation survey points used to assess flow requirements 274
Figure H3	EWR 3: Riparian vegetation survey points used to assess flow requirements 277
Figure H4	EWR 4: Riparian vegetation survey points used to assess flow requirements 280
Figure H5	EWR 5: Riparian vegetation survey points used to assess flow requirements 283
Figure H6	EWR 6: Riparian vegetation survey points used to assess flow requirements 286
Figure H7	EWR 7: Riparian vegetation survey points used to assess flow requirements 289
Figure H8	EWR 1: Riparian vegetation survey points used to assess flow requirements 293
Figure H9	EWR 2: Riparian vegetation survey points used to assess flow requirements 296
Figure H10	EWR 3: Riparian vegetation survey points used to assess flow requirements 300
Figure H11	EWR 4: Riparian vegetation survey points used to assess flow requirements 303
Figure H12	EWR 5: Riparian vegetation survey points used to assess flow requirements 306
Figure H13	EWR 6: Riparian vegetation survey points used to assess flow requirements 309
Figure H14	EWR 7: Riparian vegetation survey points used to assess flow requirements 312
Figure H15	EWR 8: Riparian vegetation survey points used to assess flow requirements 314

ABBREVIATIONS AND ACRONYMS

450	Alternative Factorial October
AEC	Alternative Ecological Category
ASPT	Average Score Per Taxon
CD: RDM	Chief Directorate: Resource Directed Measures
Conf	Confidence
D:RQS	Directorate: Resource Quality Services
DO	Dissolved Oxygen
DWAF	Department of Water Affairs and Forestry
EC	Ecological Category
EC	Electrical Conductivity
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirements
F	Flow related
FD	Fast Deep
FRAI	Fish Response Assessment Index
FROC	Fish Frequency of Occurrence
FS	Fast Shallow
Geom	Geomorphology
GSM	Gravel, sand, mud habitat
HAI	Hydrology Assessment Index
Hydro	Hydrology
ПНІ	Index of Instream Habitat Integrity
Inverts	Macroinvertebrates
IRHI	Index of Rinarian Habitat Integrity
	Internal Strategic Perspective
	Kruger National Park
	Loft Ponk
LD	
mamsi	Million Outris Matrice
MIRAI	Macro Invertebrate Response Assessment Index
MRU	
MV	Marginal Vegetation
NF	Non Flow related
NRHP	National River Health Programme
NRU	Natural Resource Unit
PAI	Physico-Chemical Driver Assessment Index
PES	Present Ecological State
Physico-	Physico chemical
Quat	Quaternary catchment
DD	Pight Book
	Right Dalik Reference Condition
	Reference Condition
	Recommended Ecological Calegory
RIP Veg	
RU	
SANBI	South African National Biodiversity Institute
5A555	South African Scoring System version 5
5D	
SIC	Stones-in-current habitat
SOOC	Stones-out-ot-current habitat
SPI	Specific Pollution sensitivity Index
SRP	Soluble Reactive Phosphate

SS	Slow Shallow
STW	Sewage Treatment Works
TEACHA	Tool for Ecological Aquatic Chemical Habitat Assessment
TIN	Total Inorganic Nitrogen
VEGRAI	Riparian Vegetation Response Assessment Index
WARMS	Water Resource Management System
WFW	Working for Water
WMA	Water Management Area
WMS	Water Management System
WQSU	Water Quality Sub-Unit
WWTW	Waste Water Treatment Works

APPENDIX A: HYDROLOGY AND WATER RESOURCES OF THE MOKOLO SYSTEM Hydrology: Prof DA Hughes, Institute for Water Research Water Resources: Mr S Mallory, Water for Africa Hydrological causes and sources upstream of EWR sites in the Crocodile and Sabie System: Mr S Mallory and Ms Delana Louw, Water for Africa

A1 HYDROLOGY OF THE CROCODILE-EAST AND SABIE RIVERS CATCHMENT

A1.1 INTRODUCTION

For the purposes of this specialist appendices CE refers to the EWR sites situated in the Crocodile River System and SB refers to the EWR sites situated in the Sabie River system. Numbering corresponds to the EWR site numbers.

The location of the EWR sites (CE1 to CE7 and SB1 to SB8), the quaternary catchment boundaries, rivers and old IFR sites are shown in Figure A1. Sites CE1 to CE6 are on the Crocodile River, site CE7 on the Kaap River, Sites SB1 to SB3 are on the Sabie River, site SB4 on the Mac Mac River, site SB6 on the Mutlumuvi River and sites SB7 and SB8 are on the Sand River.

Figure A1 EWR sites and quaternary catchments

A1.2 DWAF STREAMFLOW GAUGES

There are several DWAF daily streamflow gauges and these are referred to during the individual site reports (Section A1.3) and Section A1.4.

A1.3 PRESENT DAY HYDROLOGICAL IMPACTS

The natural and present day time series of monthly flows were provided by the systems modellers and these have been compared with the observed records as part of the assessment of the present day hydrological impacts.

A1.3.1 HAI for CE1 – EWR 1: Valyspruit (Crocodile River)

The present day flows are very similar to natural with only small impacts on all flows (Table A1 and Figures A1 and A2).

Table A1HAI details for Site CE1

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	2.0	4.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	4.00
MODERATE EVENTS	0.0	4.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	0.0	4.00

Figure A2 Annual monthly flow duration curves (data 1920 to 2004) for site CE1 (Black = Natural, Blue = Present Day)

Figure A3 Seasonal distributions (data 1920 to 2004) for site CE1 (Black = Natural, Blue = Present Day)

A1.3.2 HAI for CE2 – EWR 2: Goedenhoop (Crocodile River)

The present day flows are very similar to natural with only small impacts on all flows (Table A2 and Figures A4 and A5).

Table A2HAI details for Site CE2

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	2.0	4.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	4.00
MODERATE EVENTS	0.0	4.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	0.0	4.00

Figure A4 Annual monthly flow duration curves (data 1920 to 2004) for site CE2 (Black = Natural, Blue = Present Day)

Figure A5 Seasonal distributions (data 1920 to 2004) for site CE2 (Black = Natural, Blue = Present Day)

A1.3.3 HAI for CE3 – EWR 3: Poplar Creek (Crocodile River)

The natural and present day flow duration curves and seasonal distributions are shown in Figures A6 and A7 and together illustrate very large changes in the flow regime. Except in very wet years, the seasonality has been almost completely reversed. It is therefore very difficult to apply the normal procedure for the HAI ratings, however, almost all of the indices of change will be very high (Table A3). The simulated present day flows are not very consistent with the observed records at X2H013 (just downstream of the site).

Table A3HAI details for Site CE3

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	4.0	3.00
ZERO FLOW DURATION	0.0	3.00
SEASONALITY	5.0	3.00
MODERATE EVENTS	4.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	4.0	3.00

Figure A6 Annual monthly flow duration curves (data 1920 to 2004) for site CE3 (Black = Natural, Blue = Present Day)

Figure A7 Seasonal distributions (data 1920 to 2004) for site CE3 (Black = Natural, Blue = Present Day)

A1.3.4 HAI for CE4 – EWR 4: KaNyamazane (Crocodile River)

Figures A8 and A9 illustrate the flow regime changes, while Table A4 provides the HAI values. The biggest changes appear to be in the moderate events, with some reductions in low flows. The observed records at X2H032 (just down steam) suggest greater impacts on low flows than indicated by the simulated present day flows.

Table A4 HAI details for Site CE4

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	2.0	3.00
ZERO FLOW DURATION	0.0	3.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	4.0	4.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	4.00

Figure A8 Annual monthly flow duration curves (data 1920 to 2004) for site CE4 (Black = Natural, Blue = Present Day)

Figure A9 Seasonal distributions (data 1920 to 2004) for site CE4 (Black = Natural, Blue = Present Day)

A1.3.5 HAI for CE5 – EWR 5: Malelane (Crocodile River)

Figures A10 and A11 illustrate that there are large differences between the natural and present day flow regimes and that most of the changes are in the low and moderate flows (Table A5). The observed flows at X2H046 (just downstream of the site) are a reasonable match to the simulated present day flows.

Table A5 HAI details for Site CE5

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	3.0	3.00
ZERO FLOW DURATION	1.0	3.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	4.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	3.00

Figure A10 Annual monthly flow duration curves (data 1920 to 2004) for site CE5 (Black = Natural, Blue = Present Day)

Figure A11 Seasonal distributions (data 1920 to 2004) for site CE5 (Black = Natural, Blue = Present Day)

A1.3.6 HAI for CE6 – EWR 6: Nkongoma (Crocodile River)

There has been a substantial decrease in low flows (Figures A12 and A13) and during most dry seasons the flow is very low (but only zero for about 3% of the time). There is a reasonable match between the simulated present day flows and the observed flows at X2H016 (just upstream).
Table A6HAI details for Site CE6

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	5.0	4.00
ZERO FLOW DURATION	1.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	4.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	3.0	3.00

Figure A12 Annual monthly flow duration curves (data 1920 to 2004) for site CE6 (Black = Natural, Blue = Present Day)

Figure A13 Seasonal distributions (data 1920 to 2004) for site CE6 (Black = Natural, Blue = Present Day)

A1.3.7 HAI for CE7 – EWR 7: Honeybird (Kaap River)

Figures A14 and A15 illustrate the differences between the natural and present day flow regimes, while Table A7 lists the indices of change. Zero flows appear to now exist for some 6% of the time and other low flows are similarly impacted. There is a reasonable match between the simulated present day flows and the later period of observed flows at X2H022 (quite far downstream).

Table A7HAI details for Site CE7

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	5.0	3.00
ZERO FLOW DURATION	3.0	3.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	3.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	3.0	3.00

Figure A14 Annual monthly flow duration curves (data 1920 to 2004) for site CE7 (Black = Natural, Blue = Present Day)

Figure A15 Seasonal distributions (data 1920 to 2004) for site CE7 (Black = Natural, Blue = Present Day)

A1.3.8 HAI for SB1 – EWR 1: Upper Sabie (Sabie River)

Figures A16 and A17 (and Table A8) illustrate that there have been some changes to the flow regime. Many of these are associated with plantation forests in the catchment that have been present for many years. Gauge X3H001 is the closest, but is too far upstream to be very useful.

Table A8 HAI details for Site SB1

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	3.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	2.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	3.00

Figure A16 Annual monthly flow duration curves (data 1920 to 2004) for site SB1 (Black = Natural, Blue = Present Day)

Figure A17 Seasonal distributions (data 1920 to 2004) for site SB1 (Black = Natural, Blue = Present Day)

A1.3.9 HAI for SB2 – EWR 2: Aan de Vliet (Sabie River)

Figures A18 and A19 (and Table A9) illustrate that there have been some changes to the flow regime. Many of these are associated with plantation forests in the catchment that have been present for many years. The simulated present day flows are reasonably consistent with the gauged flows at X3H006 (just downstream).

Table A9HAI details for Site SB2

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	3.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	2.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	3.00

Figure A18 Annual monthly flow duration curves (data 1920 to 2004) for site SB2 (Black = Natural, Blue = Present Day)

Figure A 19 Seasonal distributions (data 1920 to 2004) for site SB2 (Black = Natural, Blue = Present Day)

A1.3.10 HAI for SB3 – EWR 3: Kidney (Sabie River)

Figures A20 and A21 (and Table A10) illustrate that there have been some changes to the flow regime. Many of these are associated with plantation forests in the catchment that have been present for many years. There is a relatively short record of flows at X3H021 (downstream) and the observed flows are reasonably consistent with the simulated data.

Table A10 HAI details for Site SB3

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	4.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	3.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	3.00

Figure A20 Annual monthly flow duration curves (data 1920 to 2004) for site SB3 (Black = Natural, Blue = Present Day)

Figure A21 Seasonal distributions (data 1920 to 2004) for site SB3 (Black = Natural, Blue = Present Day)

A1.3.11 HAI for SB4 – EWR 4: Mac Mac (Mac Mac River)

Similar changes to the main Sabie River sites. No suitable flow gauging site.

Table A11 HAI details for Site SB4

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	3.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	2.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	1.0	3.00

Figure A22 Annual monthly flow duration curves (data 1920 to 2004) for site SB4 (Black = Natural, Blue = Present Day)

Figure A23 Seasonal distributions (data 1920 to 2004) for site SB4 (Black = Natural, Blue = Present Day)

A1.3.12 HAI for SB5 – EWR 5: Marite (Marite River)

Similar changes to the main Sabie River sites.

Table A12 HAI details for Site SB5

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	4.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	3.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	2.0	3.00

Figure A24 Annual monthly flow duration curves (data 1920 to 2004) for site SB5 (Black = Natural, Blue = Present Day)

Figure A25 Seasonal distributions (data 1920 to 2004) for site SB5 (Black = Natural, Blue = Present Day)

A1.3.13 HAI for SB6 – EWR 6: Mutlumuvi (Mutlumuvi River)

Quite large reductions in low flows (some zero flows).

Table A13 HAI details for Site SB6

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	4.0	3.00
ZERO FLOW DURATION	1.0	3.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	1.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	0.0	3.00

Figure A26 Annual monthly flow duration curves (data 1920 to 2004) for site SB6 (Black = Natural, Blue = Present Day)

Figure A27 Seasonal distributions (data 1920 to 2004) for site SB6 (Black = Natural, Blue = Present Day)

A1.3.14 HAI for SB7 – EWR 7: Tlulandziteka (Tlulandziteka River)

Not many changes at this site.

Table A14HAI details for Site SB7

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	2.0	3.00
ZERO FLOW DURATION	0.0	4.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	1.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	0.0	3.00

Figure A28 Annual monthly flow duration curves (data 1920 to 2004) for site SB7 (Black = Natural, Blue = Present Day)

Figure A29 Seasonal distributions (data 1920 to 2004) for site SB7 (Black = Natural, Blue = Present Day)

A1.3.15 HAI for SB8 – EWR 8: Sand (Sand River)

Large changes to low flows but not to most of the other flows. The available gauge records (quite far upstream at X3H008) are reasonably consistent with the simulated flows.

Table A15HAI details for Site SB8

HYDROLOGY METRICS	RATING	CONFIDENCE
LOW FLOWS	5.0	3.00
ZERO FLOW DURATION	2.0	3.00
SEASONALITY	0.0	5.00
MODERATE EVENTS	1.0	3.00
EVENT HYDROLOGY(HIGH FLOWS-FLOODS)	0.0	3.00

Figure A30 Annual monthly flow duration curves (data 1920 to 2004) for site SB8 (Black = Natural, Blue = Present Day)

Figure A31 Seasonal distributions (data 1920 to 2004) for site SB8 (Black = Natural, Blue = Present Day)

A1.4 OBSERVED FLOW DATA

Observed flow data is provided below.

Station Name	EWR Site	Start date	End Date
X2R005	Downstream CE2	01/1985	2008
X2H033	Downstream CE2	07/1970	05/1992
X2H013	Close to CE3	02/1959	2008
X2H006	Upstream CE4	10/1929	2008
X2H032	Downstream CE4	10/1968	2008
X2H046	Downstream CE5	10/1985	2008
X2H016	Upstream CE6	09/1960	2008
X2H022	Downstream CE7	09/1960	2008
X3H001	Upstream SB1	04/1948	2008
X3H006	Downstream SB2	10/1958	09/1990
X3H021	Downstream SB3	12/1990	2008
X3H008	Upstream SB8	10/1967	2008

Table A16 List of available observed flow data

A1.5 RANGE OF BASE FLOWS

Table A17 provides an indication of the range of baseflows that could be expected at all sites under natural conditions. Note that the maximum values given for SB8 on the Sand River are very uncertain.

Table A17 Range of baseflows for the 15 sites

Site	Data Source	Min. Baseflow (m³ s⁻¹)	Max. Baseflow (m³ s⁻¹)
CE1	Monthly	0.05	0.4
CE2	X2H033 & Monthly	0.3	2.3
CE3	X2H013 & Monthly	1.0	10.0 to 12.0
CE4	X2H032 & Monthly	4.2	35.0 to 40.0
CE5	X2H046 & Monthly	6.0	50.0 to 70.0
CE6	X2H016 & Monthly	6.2	50.0 to 70.0
CE7	X2H022 & Monthly	1.2	8.0 to 10.0
SB1	X3H001 & Monthly	0.95	6.0 to 8.0
SB2	X3H006 & Monthly	1.7	12.0 to 14.0
SB3	X3H021 & Monthly	3.1	20.0 to 30.0
SB4	Monthly	0.4	2.5 to 3.5
SB5	Monthly	0.7	7.0 to 8.0
SB6	Monthly	0.17	1.6 to 1.8
SB7	Monthly	0.12	1.0 to 1.2
SB8	X3H008 & Monthly	0.38	4.0 to 8.0

A2 HYDROLOGY AND WATER RESOURCES OF THE MOKOLO CATCHMENT

A2.1 CROCODILE RIVER SYSTEM

A summary of the system hydrology is provided below.

Table A18 EWR 1: Valeyspruit (Crocodile River)

EWR 1: Valeyspruit (Crocodile River)		
Are there reliable gauges near to the site?		No. The nearest reliable gauge is the Kwena Dam situated at the outlet of X21C. There is a gauge X2H074 in the X21B catchment about 20 km down stream of EWR 1 but this was not used in the hydrology study. It seems there is no data for this gauge.
How long	a record is available?	1985 to 2008.
Does it m	easure low flows accurately?	No. This record is calculated from stage measurements in the Kwena Dam and low flows are probably not accurate.
Will it reco	ord zero flows accurately?	No.
What are	the highest flows it can record before it drowns out?	The spillway of Kwena will never drown. The spillway is rated up to 5 248 m ³ /s.
Rate your and provid	confidence in your modelled naturalised hydrology de reasons (1 (low) – 5 (high)	2.5 = Relatively low confidence.
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	2.5 = Relatively low confidence.
Are there major differences between observed hydrology and modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual, note that.		There have not been significant changes in this catchment over the period of recorded flow. The only change has been the construction of many trout dams which would reduce low flow and delay the first freshettes. Also Dullstroom's abstraction has increased somewhat over the last few 5 to 10 years.
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Marginal change. Volume is slightly less due to small abstraction by Dullstroom for domestic use.
	Are the changes an increase or decrease?	Decrease.
SMC	Are the changes continuous through the year or only in specific seasons/months?	Continuous.
V) FL(Have the natural seasonal distribution changed and if yes, how and why?	The seasonal distribution has only been slightly changed.
е (гол	Why has the base flow changed, i.e. what is the water being used for.	Used for domestic purposes. Trout dams also reduce the baseflow due to evaporation losses and delay the onset of the first freshette of spring.
BAS	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
шIJ	Has the frequency of floods changed from natural?	Probably not. Lots of dams but they are all small. Only impact on small freshes.
MODERATE FLOODS (HIC FLOWS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	Change in onset of first fresh.
	Are there any changes in seasonality of the floods? And if yes, how.	No.
	Why has the flooding regime changed?	Trout dams.
	Has the frequency of floods changed from natural?	No.
ARGE OODS HIGH OWS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else.	Increase/Decrease
그 글 ⁽) 글	Are there any changes in seasonality of the floods? And if yes, how.	Yes/No.

EWR 1: Valeyspruit (Crocodile River)		
Why have the flooding changed?		
Have any frequency analysis of floods been undertaken and if so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.	No.	
Any general comments or anything else one should take note of?		

Table A19 EWR 2: Goedehoop (Crocodile River)

EWR 2: Goedenhoop (Crocodile River)		
Are there reliable gauges near to the site?		No. The nearest reliable gauge is the Kwena Dam situated at the outlet of X21C. There is a gauge X2H074 in the X21B catchment a few kilometres upstream of EWR 2 but this was not used in the hydrology study. It seems there is not data for this gauge.
How long	a record is available?	1985 to 2008.
Does it m	easure low flows accurately?	No. This record is calculated from stage measurements in the Kwena Dam and low flows are probably not accurate.
Will it reco	ord zero flows accurately?	No.
What are	the highest flows it can record before it drowns out?	The spillway of Kwena will never drown. The spillway is rated up to 5 248 m ³ /s
Rate your and provid	confidence in your modelled naturalised hydrology de reasons (1 (low) – 5 (high)	2 = Relatively low confidence.
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	2 = Relatively low confidence.
Are there major differences between observed hydrology and modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual, note that.		There have not been significant changes in this catchment over the period of recorded flow. The only change has been the construction of many trout dams which would reduce low flow and delay the first freshettes of spring. Also Dullstrrom's abstraction has increased somewhat over the last few 5 to 10 years. Some abstraction for agriculture also takes place.
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Marginal change. Volume is slightly less due to small abstraction by Dullstroom for domestic use.
	Are the changes an increase or decrease?	Decrease.
	Are the changes continuous through the year or only in specific seasons/months?	Continuous.
	Have the natural seasonal distribution changed and if yes, how and why?	The seasonal distribution has only been slightly changed.
-LOWS	Why has the base flow changed, i.e. what is the water being used for.	Used for domestic purposes. Trout dams also reduce the baseflow due to evaporation losses and delay the onset of the first freshette of spring.
(LOW) F	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
BASE	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
፲	Has the frequency of floods changed from natural?	Probably not. Lots of dams but they are all small.
ERATE S (HIG DWS)	Are the changes an increase or a decrease? It an increase, is it due to dam releases, urban runoff, or something else	
	Are there any changes in seasonality of the floods? And if yes, how.	No.
Ē	Why has the flooding regime changed?	
S) (s	Has the frequency of floods changed from natural?	No.
10 X	Are the changes an increase or a decrease? If an	
FLO	increase, is it due to dam releases, urban runoff, or something else.	Increase/Decrease.
RGE	Are there any changes in seasonality of the floods? And if yes, how.	No.
÷ [Why have the flooding changed?	
Have any frequency analysis of floods been undertaken and if so, what are the flood peaks (in m ³ /s). E.g. 1:2 = X m ³ /s etc.		No.

Any general comments or anything else one should take note of?

Table A20 EWR 3: Poplar Creek (Crocodile River)

EWR 3: Poplar Creek (Crocodile River)		
		The Montrose gauge (X2H013) is located just
Are there	reliable gauges near to the site?	downstream of EWR 3 but this gauge is not considered
How long a record is available?		to be particularly reliable.
Does it m	a record is available :	1959 - 2000. No. Thought to overestimate the low-flow
Will it reco	asule low nows accurately:	Probably
What are	the highest flows it can record before it drowns out?	136 m ³ /s
Rate vour	confidence in vour modelled naturalised hydrology	3 = Medium confidence. Although low flows may not be
and provid	de reasons (1 (low) – 5 (high)	accurate, gauge record is long and 95% complete.
Rate your	confidence in your modelled present hydrology and	3 = Medium confidence. Some uncertainty as to low
provide re	asons (1 (low) – 5 (high)	flows.
		The presence of the Kwena Dam upstream of EWR 3
Are there	major differences between observed hydrology &	will have had a major influence on the hydrology of the
modelleu	present hydrology? Why? II present hydrology	Catchment. Large releases are made from the Kwena
aradual, n	inte that	completed in 1984 and after this date the natural and
gradadi,		actual flow would have deviated significantly.
		Yes. Baseflow volume is greater due to releases from
	Have base flows changed from natural? (in volume,	Kwena. Releases are greatest in late winter and early
	and/or time and/or distribution)	spring hence the distribution of baseflows has also
		changed.
ŠŇ	Are the changes an increase or decrease?	Increase
P C	Are the changes continuous through the year of only in specific seasons/months?	Change is throughout the year but most significant
E	Have the natural seasonal distribution changed and	
Ň	if ves. how and why?	Yes. See above.
LC (F	Why has the base flow changed, i.e. what is the	Delegence used for irritection
щ	water being used for.	Releases used for imgation.
AS	What (in m ³ /s) is the natural range of baseflows	
Δ	(lowest to highest). If possible, provide for the wet	
	season, and dry season.	
	What (In m ² /s) is the present day range of baseflows (lowest to bigbest). If possible, provide	
	for the wet season, and dry season.	
т	Has the frequency of floods changed from natural?	Yes.
Щ <u>Б</u>	Are the changes an increase or a decrease? If an	Decrease due to the presence of the Kwone Dam which
ζ S H	increase, is it due to dam releases, urban runoff, or	will attenuate moderate floods
P SO SO	something else	
	Are there any changes in seasonality of the floods?	Yes. Moderate flood moved to later in the hydrological
Σĭ	And if yes, now.	year by a month or two.
S -	Has the frequency of floods changed from natural?	Not significantly
VS)	Are the changes an increase or a decrease? If an	Not significantly.
FLOO	increase, is it due to dam releases, urban runoff, or	Decrease.
	something else.	
B Fe	Are there any changes in seasonality of the floods?	Ves
AR	And if yes, how.	
	Why have the flooding changed?	Kwena Dam.
Have any	frequency analysis of floods been undertaken and if $rac{1}{2} = X m^{3}/c$ at $rac{1}{2} = X m^{3}/c$ at $rac{1}{2} = X m^{3}/c$	No.
	If the 1000 peaks (11 117/s). E.y. $1.2 = A 117/s = 0.$	
of?	ar comments of anything else one should take hole	

Figure A32 Flow duration curve for EWR 3

Table A21 EWR 4: Mac Mac (Mac Mac River)

EWR 4: Mac Mac (Crocodile River)		
Are there reliable gauges near to the site?		The gauge X2H006 is located approximately 12 km upstream of the EWR 4 site. This gauge is considered to be reliable although probably underestimates high flows.
How long	a record is available?	1929 to 2008.
Does it m	easure low flows accurately?	Yes.
Will it reco	ord zero flows accurately?	Yes.
What are	the highest flows it can record before it drowns out?	Not specified.
Rate your confidence in your modelled naturalised hydrology and provide reasons (1 (low) – 5 (high)		3 = Uncertainty as to timing and quantity of releases from the Kwena dam for irrigators which affects the flow at this site.
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	3 = Uncertainty as to the irrigation demands which dominate water use in the catchment.
Are there modelled reflects re gradual, n	major differences between observed hydrology & present hydrology? Why? If present hydrology cent changes, provide info. If changes have been ote that.	A major change occurred in 1984 when the Kwena Dam was completed. Also increasing irrigation and afforestation over the years have gradually reduced the flow.
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. Reduced baseflow, except for late winter and early spring where baseflows are supplemented by releases from Kwena Dam.
	Are the changes an increase or decrease?	Decrease.
swo-	Are the changes continuous through the year or only in specific seasons/months?	
OW) FI	Have the natural seasonal distribution changed and if yes, how and why?	There is a slight change in the natural seasonal distribution due to water use and releases from the Kwena Dam.
SE (L	Why has the base flow changed, i.e. what is the water being used for.	See above. Water is used mainly for irrigation.
BAS	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
te floods Flows)	Has the frequency of floods changed from natural?	No significant change.
	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	
DERA (HIGH	Are there any changes in seasonality of the floods? And if yes, how.	
N N	Why has the flooding regime changed?	

EWR 4: Mac Mac (Crocodile River)		
s) ()	Has the frequency of floods changed from natural?	No.
	Are the changes an increase or a decrease? If an	
O P	increase, is it due to dam releases, urban runoff, or	
뜨림	something else.	
LARGE (HIGH	Are there any changes in seasonality of the floods?	
	And if yes, how.	
	Why have the flooding changed?	
Have any frequency analysis of floods been undertaken and if		No
so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.		110
Any general comments or anything else one should take note		
of?		

Figure A33 Flow duration curve for EWR 4

Table A22 EWR 5: Malelane (Crocodile River)

EWR 5: Malelane (Crocodile River)		
Are there reliable gauges near to the site?		A reasonably reliable gauge X2H047 is located about 15 km downstream of EWR 5.
How long	a record is available?	1985 to present.
Does it m	easure low flows accurately?	Yes, but unrecorded abstractions are made immediately upstream of the weir.
Will it reco	ord zero flows accurately?	No.
What are	the highest flows it can record before it drowns out?	Unknown.
Rate your and provid	confidence in your modelled naturalised hydrology de reasons (1 (low) – 5 (high)	3 = Limited confidence. Uncertainty due to upstream water use.
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	3 = Uncertainty due to upstream water use.
Are there major differences between observed hydrology & modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual note that		There is a significant reduction in flow due to extensive irrigation and afforestation upstream of the site.
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. The volume has reduced but distribution remains approximately the same as natural.
	Are the changes an increase or decrease?	Decrease.
SWO	Are the changes continuous through the year or only in specific seasons/months?	The change is throughout the year.
V) FL	Have the natural seasonal distribution changed and if yes, how and why?	Se above.
BASE (LOV	Why has the base flow changed, i.e. what is the water being used for.	Water use by irrigation and afforestation.
	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	

т	Has the frequency of floods changed from natural?	No.
MODERATE -OODS (HIGI FLOWS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	Decrease in the magnitude of moderate floods due to upstream water use.
	Are there any changes in seasonality of the floods? And if yes, how.	No.
L	Why has the flooding regime changed?	Upstream water use.
SC ()	Has the frequency of floods changed from natural?	No.
D N	Are the changes an increase or a decrease? If an	
E FLO	increase, is it due to dam releases, urban runoff, or	
	Are there any changes in seasonality of the floods?	
-RG	And if yes, how.	
÷)	Why have the flooding changed?	
Have any frequency analysis of floods been undertaken and if		No
so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.		
Any general comments or anything else one should take note		
of?		

Figure A34 Flow duration curve for EWR 5

Table A23 EWR 6: Nkongoma (Crocodile River)

EWR 6: Nkongoma (Crocodile River)		
Are there reliable gauges near to the site?		A reasonable gauge X2H016 is located about 6 km upstream of EWR 6.
How long	a record is available?	1960 to present.
Does it me	easure low flows accurately?	Probably not due to the accumulation of debris.
Will it reco	ord zero flows accurately?	No.
What are	the highest flows it can record before it drowns out?	Unknown.
Rate your confidence in your modelled naturalised hydrology and provide reasons (1 (low) – 5 (high)		3 = Limited confidence. Uncertainty due to upstream water use.
Rate your confidence in your modelled present day hydrology and provide reasons (1 (low) – 5 (high)		3 = Uncertainty due to upstream water use.
Are there major differences between observed hydrology & modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual, note that.		Yes, There is a large reduction in flow due to extensive irrigation and afforestation upstream of the site.
5	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. The volume has reduced but distribution remains approximately the same as natural.
δo	Are the changes an increase or decrease?	Decrease.
BASE (L FLOW	Are the changes continuous through the year or only in specific seasons/months?	The change is throughout the year but more pronounced in the winter and early spring.
	Have the natural seasonal distribution changed and if yes, how and why?	See above.
	Why has the base flow changed, i.e. what is the	Water use by irrigation and afforestation.

	water being used for.	
	What (in m ³ /s) is the natural range of baseflows	
	(lowest to highest). If possible, provide for the wet	
	season, and dry season.	
	What (in m ³ /s) is the present day range of	
	baseflows (lowest to highest). If possible, provide	
	for the wet season, and dry season.	
Т	Has the frequency of floods changed from natural?	No.
₽₽́	Are the changes an increase or a decrease? If an	Decrease in the magnitude of moderate floods due to
AS T SA	increase, is it due to dam releases, urban runoff, or	upstream water use
E S S	something else	
	Are there any changes in seasonality of the floods?	No
Ĕ Ŭ	And if yes, how.	110.
ш	Why has the flooding regime changed?	Upstream water use.
SC (i	Has the frequency of floods changed from natural?	No.
٥Ň	Are the changes an increase or a decrease? If an	
0 0	increase, is it due to dam releases, urban runoff, or	Increase/Decrease.
	something else.	
빙풍	Are there any changes in seasonality of the floods?	Vec/No
¥ ¥	And if yes, how.	163/140.
i) L/	Why have the flooding changed?	
Have any frequency analysis of floods been undertaken and if		No
so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.		
Any general comments or anything else one should take note		
of?		

Figure A35 Flow duration curve for EWR 6

Table A24 EWR 7: Honeybird (Kaap River)

EWR 7: Honeybird (Kaap River)		
Are there reliable gauges near to the site?	The gauge X2H022 is located approximate 20 km downstream of EWR 7. It appears as if this is a reasonable gauge.	
How long a record is available?	1960 to present.	
Does it measure low flows accurately?	Yes.	
Will it record zero flows accurately?	Yes.	
What are the highest flows it can record before it drowns out?	Unknown	
Rate your confidence in your modelled naturalised hydrology and provide reasons (1 (low) – 5 (high)	3 = Limited confidence. Uncertainty due to upstream water use.	
Rate your confidence in your modelled present day hydrology and provide reasons (1 (low) – 5 (high)	3 = Uncertainty due to upstream water use.	
Are there major differences between observed hydrology & modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been	Yes, There is a large reduction in flow due to extensive irrigation and afforestation upstream of the site.	

EWR 7: Honeybird (Kaap River)		
gradual, n	ote that.	
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. The volume has reduced but distribution remains approximately the same as natural.
	Are the changes an increase or decrease?	Decrease.
smo	Are the changes continuous through the year or only in specific seasons/months?	The change is throughout the year but more pronounced in the winter and early spring.
V) FL	Have the natural seasonal distribution changed and if yes, how and why?	See above.
(LOV	Why has the base flow changed, i.e. what is the water being used for.	Water use by irrigation and afforestation.
BASE	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
т	Has the frequency of floods changed from natural?	No.
ERATE IS (HIGI IWS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	Decrease in the magnitude of moderate floods due to upstream water use.
MOD LOOE	Are there any changes in seasonality of the floods? And if yes, how.	No.
ш	Why has the flooding regime changed?	Upstream water use.
s) SD	Has the frequency of floods changed from natural?	No.
RGE FLOO	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else.	Increase/Decrease.
	Are there any changes in seasonality of the floods? And if yes, how.	Yes/No.
ΞΞ	Why have the flooding changed?	
Have any frequency analysis of floods been undertaken and if so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.		No.
Any general comments or anything else one should take note of?		

A2.2 SABIE RIVER SYSTEM

A summary of the system hydrology is provided below.

Table A25 EWR 1: Sabie (Sabie River)

EWR 1: Sabie (Sabie River)		
Are there reliable gauges near to the site?		The nearest reliable gauge is Sabie River gauge located about 9 km upstream of the EWR site. The gauge seem reasonable but has suspicious zero flows prior to 1969.
How long a record is available?		1948 to present.
Does it measure low flows accurately?		Low flows probably not very accurate.
Will it record zero flows accurately?		No.
What are the highest flows it can record be	fore it drowns out?	Not stated.
Rate your confidence in your modelled nature and provide reasons (1 (low) – 5 (high)	uralised hydrology	3 = Reasonable confidence.
Rate your confidence in your modelled pres and provide reasons (1 (low) – 5 (high)	sent day hydrology	3 = Reasonable confidence.
Are there major differences between obsermodelled present hydrology? Why? If present hydrology, Why? If present changes, provide info. If chargradual, note that.	ved hydrology & sent hydrology anges have been	Yes. Gradual change over time due to afforestation.
Have base flows changed from and/or time and/or distribution)	natural? (in volume,	Significant reduction in baseflow due to afforestation. Also abstractions from Sabie town.
Are the changes an increase or	decrease?	Decrease.
Are the changes continuous through the changes continuous the changes continuous through the	ough the year or ?	Continuous.
Have the natural seasonal distri	bution changed and	Small change in seasonal distribution.
Why has the base flow changed water being used for.	l, i.e. what is the	Afforestation.
What (in m ³ /s) is the natural ran (lowest to highest). If possible, season, and dry season.	ge of baseflows provide for the wet	
What (in m ³ /s) is the present da baseflows (lowest to highest). I for the wet season, and dry sea	y range of f possible, provide son.	
 Has the frequency of floods characteristic 	inged from natural?	No.
Are the changes an increase or increase, is it due to dam releas something else	a decrease? If an ses, urban runoff, or	Slight decrease in flood peaks.
Are there any changes in seaso And if yes, how.	nality of the floods?	No.
Why has the flooding regime ch	anged?	
Has the frequency of floods cha	nged from natural?	No.
Are the changes an increase or increase, is it due to dam releas something else.	a decrease? If an ses, urban runoff, or	Slight decrease in flood peaks.
Are there any changes in seaso And if yes, how.	nality of the floods?	Yes/No.
S ➡ Why have the flooding changed	?	
Have any frequency analysis of floods been so, what are the flood peaks (in m ³ /s). E.g.	n undertaken and if . 1:2 = X m ³ /s etc.	No.
Any general comments or anything else on of?	e should take note	

Figure A37 Flow duration curve for EWR 1

Table A26 EWR 2: Aan de Vliet (Sabie River)

EWR 2: Aan de Vliet (Sabie River)		
Are there	reliable gauges near to the site?	The new gauge at Emmet is located just upstream of the EWR site. This is a reliable gauge.
How long	a record is available?	2002 to present.
Does it me	easure low flows accurately?	Yes.
Will it reco	ord zero flows accurately?	Yes.
What are	the highest flows it can record before it drowns out?	Not stated.
Rate your and provid	confidence in your modelled naturalised hydrology de reasons (1 (low) – 5 (high)	4 = Good confidence.
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	4 = Good confidence.
Are there modelled reflects re gradual, n	major differences between observed hydrology & present hydrology. Why?. If present hydrology cent changes, provide info. If changes have been ote that.	No.
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Significant reduction in baseflow due to afforestation.
	Are the changes an increase or decrease?	Decrease.
SV	Are the changes continuous through the year or only in specific seasons/months?	Continuous.
	Have the natural seasonal distribution changed and if yes, how and why?	The seasonal distribution has only been slightly changed.
(MOJ) =	Why has the base flow changed, i.e. what is the water being used for.	Afforestation. Significant abstractions in tributaries such as the Sabane (and damming) contribute to changes of flow as well as the upstream Sabie Town influences.
BASI	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
н	Has the frequency of floods changed from natural?	No.
ERATE DS (HIG OWS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	Slight decrease in flood peaks.
	Are there any changes in seasonality of the floods? And if yes, how.	No.
ш	Why has the flooding regime changed?	
s	Has the frequency of floods changed from natural?	No.
LARGE LARGE LOOD (HIGH LOWS	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else.	Slight decrease in flood peaks.
	Are there any changes in seasonality of the floods?	Yes/No.

	And if yes, how.	
	Why have the flooding changed?	
Have any so, what a	frequency analysis of floods been undertaken and if the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.	No.
Any gene	ral comments or anything else one should take note	

Figure A38 Flow duration graph for EWR 2

Table A27 EWR 3: Kidney (Sabie River)

	EWR 3: Kidney (Sabie River)		
Are there reliable gauges near to the site?		No. Gauge X3H021 is located approximately 25 km DS of the EWR site but this gauge is missing quite a lot of data (> 12%) and is reportedly not calibrated correctly due to the addition of a fish ladder.	
How long	a record is available?	1990 to present.	
Does it m	easure low flows accurately?	No.	
Will it reco	ord zero flows accurately?	No.	
What are	the highest flows it can record before it drowns out?	Not stated.	
Rate your and provid	confidence in your modelled naturalised hydrology de reasons (1 (low) – 5 (high)	2.5 = Medium to low confidence.	
Rate your and provid	confidence in your modelled present day hydrology de reasons (1 (low) – 5 (high)	2.5 = Medium to low confidence.	
Are there modelled reflects re gradual, n	major differences between observed hydrology & present hydrology? Why? If present hydrology cent changes, provide info. If changes have been note that.	The completion of the Inyaka Dam in 2000 should have changed the hydrology.	
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Significant reduction in baseflow due to afforestation and irrigation.	
	Are the changes an increase or decrease?	Decrease.	
SMO	Are the changes continuous through the year or only in specific seasons/months?	Continuous.	
W) FI	Have the natural seasonal distribution changed and if yes, how & why?	Slightly changed.	
(FO	Why has the base flow changed, i.e. what is the water being used for.	Afforestation and irrigation.	
BASE	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.		
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.		

Т	Has the frequency of floods changed from natural?	Yes.
щΩ	Are the changes an increase or a decrease? If an	
S H A	increase is it due to dam releases urban runoff or	Decrease in flood frequency due to the Invaka Dam
α Š ω Š	association also	Decrease in nood nequency due to the myaka Dam.
W C O	something else	
니었었다	Are there any changes in seasonality of the floods?	No
ĭĭ ž ° −	And if yes, how.	NO.
Ē	Why has the flooding regime changed?	
S) ()	Has the frequency of floods changed from natural?	No.
	Are the changes an increase or a decrease? If an	
00	increase is it due to dam releases urban runoff or	Slight decrease in flood peaks due to afforestation &
교관	something else	Inyaka Dam.
05	Are there any changes in seasonality of the floods?	Yes/No
Ĕ	And if yes, how.	100/1101
Ч ÷	Why have the flooding changed?	
Have any	frequency analysis of floods been undertaken and if	NI-
so, what a	are the flood peaks (in m^3/s). E.g. 1:2 = X m3/s etc.	NO.
Any general comments or anything else one should take note		
of?	a comments of anything cise one should take hote	
011		

Figure A39 Flow duration curve for EWR 3

	EWR 4: Mac Mac (Mac Mac River)		
Are there re	eliable gauges near to the site?	No. Gauge X3H003 is located approximately 25km US of the EWR but this is too far upstream relative to the catchment size to reliably represent the flow at the EWR site. The gauge does however appear to be relatively reliable with few gaps.	
How long a	record is available?	1948 to 2006.	
Does it mea	asure low flows accurately?	Yes.	
Will it record	d zero flows accurately?	Probably.	
What are th	e highest flows it can record before it drowns out?	Not stated.	
Rate your c and provide	onfidence in your modelled naturalised hydrology e reasons (1 (low) – 5 (high)	3 = Medium to low confidence.	
Rate your confidence in your modelled present day hydrology and provide reasons (1 (low) – 5 (high)		3 = Medium to low confidence.	
Are there m modelled pi reflects rece gradual, no	najor differences between observed hydrology & resent hydrology. Why?. If present hydrology ent changes, provide info. If changes have been te that.	No.	
S	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Significant reduction in baseflow due to afforestation.	
δo	Are the changes an increase or decrease?	Decrease.	
E (L	Are the changes continuous through the year or only in specific seasons/months?	Continuous.	
BAS F	Have the natural seasonal distribution changed and if yes, how and why?	Slightly.	
	Why has the base flow changed, i.e. what is the	Afforestation.	

	water being used for.	
	What (in m ³ /s) is the natural range of baseflows	
	(lowest to highest). If possible, provide for the wet	
	season, and dry season.	
	What (in m ³ /s) is the present day range of	
	baseflows (lowest to highest). If possible, provide	
	for the wet season, and dry season.	
н	Has the frequency of floods changed from natural?	Yes.
<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Are the changes an increase or a decrease? If an	
S H S	increase, is it due to dam releases, urban runoff, or	
ЩSO	something else	
임질꾼	Are there any changes in seasonality of the floods?	No
žo	And if yes, how.	110:
LL.	Why has the flooding regime changed?	
SC (i	Has the frequency of floods changed from natural?	No.
۵×	Are the changes an increase or a decrease? If an	
90	increase, is it due to dam releases, urban runoff, or	Slight decrease in flood peaks due to afforestation.
	something else.	
병풍	Are there any changes in seasonality of the floods?	Vec/No
Ř. H	And if yes, how.	1 es/100.
	Why have the flooding changed?	
Have any f	equency analysis of floods been undertaken and if	No
so, what ar	e the flood peaks (in m ³ /s). E.g. 1:2 = X m ³ /s etc.	110.
Any genera	I comments or anything else one should take note	
of?		

Figure A40 Flow duration curve for EWR 4

EWR 5: Marite (Marite River)	
Are there reliable gauges near to the site?	X3H011 appears to be reliable but is missing quite a bit of data (> 11%) and is located a bit too far upstream of the EWR site relative to the catchment size. The Inyaka Dam now provides a reliable gauge for calibration purposes.
How long a record is available?	1948 to present.
Does it measure low flows accurately?	Yes.
Will it record zero flows accurately?	Probably.
What are the highest flows it can record before it drowns out?	Not stated.
Rate your confidence in your modelled naturalised hydrology and provide reasons (1 (low) $- 5$ (high)	3 = Medium to low confidence.
Rate your confidence in your modelled present day hydrology and provide reasons (1 (low) $- 5$ (high)	3 = Medium to low confidence.
Are there major differences between observed hydrology & modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual, note that.	Yes. The completion of the Inyaka Dam in 2000 will definitely have changed the flow regime at EWR 5.
$\exists o \ge \frown I$ Have base flows changed from natural? (in volume,	Significant reduction in baseflow due to afforestation

	and/or time and/or distribution)	and the Inyaka Dam.
	Are the changes an increase or decrease?	Decrease.
	Are the changes continuous through the year or	Continuous
	only in specific seasons/months?	Continuous:
	Have the natural seasonal distribution changed and	The seasonal distribution has only been slightly
	if yes, how and why?	changed.
	Why has the base flow changed, i.e. what is the	Afforestation Invaka Dam
	water being used for.	
	What (in m ³ /s) is the natural range of baseflows	
	(lowest to highest). If possible, provide for the wet	
	season, and dry season.	
	What (in m ³ /s) is the present day range of	
	baseflows (lowest to highest). If possible, provide	
	for the wet season, and dry season.	
	Has the frequency of floods changed from natural?	Yes.
	Are the changes an increase or a decrease? If an	Decrease in flood peaks and frequency due to Invaka
A RA	increase, is it due to dam releases, urban runoff, or	Dam and to a lesser extent due to afforestation.
E SO	something else	
₽ 0 E	Are there any changes in seasonality of the floods?	Yes.
ĭĽ ≊	And if yes, how.	
	Why has the flooding regime changed?	See above.
S)	Has the frequency of floods changed from natural?	Yes.
0 Š	Are the changes an increase or a decrease? If an	Slight decrease in flood peaks due to Invaka Dam and
Lo C	increase, is it due to dam releases, urban runoff, or	to a lesser extent due to afforestation.
	something else.	
GHG	Are there any changes in seasonality of the floods?	No.
AR	And if yes, how.	
ר <i>ב</i>	Why have the flooding changed?	
Have any	frequency analysis of floods been undertaken and if	No
so, what are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc.		
Any gener	al comments or anything else one should take note	
of?		

Figure A41 Flow duration curve for EWR 5

Table A28 EWR 6: Mutlumuvi (Mutlumuvi River)

EWR 6: Mutlumuvi (Mutlumuvi River)		
		No. The only gauge is the Sand River
Are there	reliable gauges near to the site?	gauge X3H008 which is remote from the
		EWR6 site.
How long	a record is available?	
Does it measure low flows accurately?		Yes.
Will it record zero flows accurately?		Probably.
What are	the highest flows it can record before it drowns out?	Not stated.
and provid	Confidence in your modelled naturalised hydrology d_{1} (both d_{2} (both d_{2})	1.5 - Low confidence.
Rate your	confidence in your modelled present day hydrology	
and provid	te reasons (1 (low) – 5 (high)	1.5 = Low confidence.
		Yes. For a few years water from the Invaka Dam was
A 11-2-2-		discharged into a tributary of the Mutlumuvi River.
Are there	major differences between observed nydrology &	Also, abstraction that used to take place upstream of
roflects re	present hydrology? Why? It present hydrology	the EWR site for domestic purposed have probably
aradual n	that	now ceased since these users are now supplied from
graddai, ii		Inyaka Dam. Return flows from these domestic users
	T	should be on the increase.
	Have base flows changed from natural? (in volume,	Yes. Before domestic users were supplied from the
	and/or time and/or distribution)	Invaka Dam it is likely that base flows were reduced to
	Are the changes on increase or decrease?	Zero dufing dry months and still drops very low.
SV	Are the changes continuous through the year or	Decrease.
ð	Are the changes continuous through the year of only in energific seasons/months?	Continuous but more noticeable during late winter and
L L	Have the natural seasonal distribution changed and	early spring.
ε	if ves, how and why?	No.
õ	Why has the base flow changed, i.e. what is the	
E	water being used for.	See above.
U S E	What (in m ³ /s) is the natural range of baseflows	
BA:	(lowest to highest). If possible, provide for the wet	
	season, and dry season.	
	What (in m ³ /s) is the present day range of	
	baseflows (lowest to highest). If possible, provide	
	for the wet season, and dry season.	
шIJ	Has the trequency of floods changed from natural?	No.
D H H	Are the changes an increase or a decrease r in an	
S (S	increase, is it due to dam releases, urban runon, or	
E S S	Are there any changes in seasonality of the floods?	
₽ŏ	And if ves how	
- <u>-</u>	Why has the flooding regime changed?	
s –	Has the frequency of floods changed from natural?	No.
0D VS	Are the changes an increase or a decrease? If an	
9 Q	increase, is it due to dam releases, urban runoff, or	
뜨겁	something else.	
빙 풍	Are there any changes in seasonality of the floods?	No
R H	And if yes, how.	
	Why have the flooding changed?	
Have any	frequency analysis of floods been undertaken and if	No.
so, what a	<u>ire the flood peaks (in m³/s). E.g. 1:2 = X m³/s etc.</u>	
Any gener	al comments of anything else one should take note	
01?		

Figure A42 Flow duration curve for EWR 6

Table A29 EWR 7: Tlulandziteka (Tlulandziteka River)

EWR 7: Tlulandziteka River		
Are there	reliable gauges near to the site?	No. The only gauge is the Sand River gauge X3H008 which is remote from the EWR 6 site.
How long	a record is available?	
Does it me	easure low flows accurately?	Yes.
Will it reco	ord zero flows accurately?	Probably.
What are	the highest flows it can record before it drowns out?	Not stated.
Rate your and provid	confidence in your modelled naturalised hydrology le reasons (1 (low) – 5 (high)	1.5 - Low confidence.
Rate your and provid	confidence in your modelled present day hydrology le reasons (1 (low) – 5 (high)	1.5 = Low confidence.
Are there modelled reflects re gradual, n	major differences between observed hydrology & present hydrology? Why? If present hydrology cent changes, provide info. If changes have been ote that.	No.
SW	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. There are two small upstream dams and a diversion works 5 km upstream of site which diverts all the low flows. This does result in the river almost stop flowing in the dry season. There are no major changes from natural conditions except for a decrease in base flows as there is some irrigation upstream of the EWR site.
Ō	Are the changes an increase or decrease?	Decrease.
Ē	Are the changes continuous through the year or	Continuous but more noticeable during late winter and
(M)	only in specific seasons/months?	early spring.
(LO	Have the natural seasonal distribution changed and if yes, how and why?	No.
3ASE	Why has the base flow changed, i.e. what is the water being used for.	See above.
ш	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season, and dry season.	
	Has the frequency of floods changed from natural?	No.
RATE S (HIGH NS)	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else	
AODE 00D5 FLOV	Are there any changes in seasonality of the floods? And if yes, how.	
	Why has the flooding regime changed?	
0000	Has the frequency of floods changed from natural?	No.

	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else.	
	Are there any changes in seasonality of the floods? And if yes, how.	No.
	Why have the flooding changed?	
Have any so, what a	frequency analysis of floods been undertaken and if are the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc	No.
Any gene of?	ral comments or anything else one should take note	

Figure A43 Flow duration curve for EWR 7

Table A30 EWR 8: Sand (Sand River)

	EWR 8: Sand (Sand River)				
Are there re	eliable gauges near to the site?	No. Although the only gauge in the Sand River X3H008 is located near the EWR site, this gauge is not reliable.			
How long a	record is available?	1967 to present.			
Does it mea	asure low flows accurately?				
Will it recor	d zero flows accurately?	Probably.			
What are th	he highest flows it can record before it drowns out?	Not stated.			
Rate your of and provide	confidence in your modelled naturalised hydrology a reasons (1 (low) – 5 (high)	1.5 - Low confidence.			
Rate your of and provide	confidence in your modelled present day hydrology e reasons (1 (low) – 5 (high)	1.5 = Low confidence.			
Are there major differences between observed hydrology & modelled present hydrology? Why? If present hydrology reflects recent changes, provide info. If changes have been gradual note that		Possibly. Afforestation has recently been removed from the catchment which should result in increased runoff.			
	Have base flows changed from natural? (in volume, and/or time and/or distribution)	Yes. There is some irrigation upstream of the EWR site.			
(0	Are the changes an increase or decrease?	Decrease			
swo-	Are the changes continuous through the year or only in specific seasons/months?	Continuous but more noticeable during late winter and early spring.			
BASE (LOW) FI	Have the natural seasonal distribution changed and if yes, how and why?	No.			
	Why has the base flow changed, i.e. what is the water being used for.	See above.			
	What (in m ³ /s) is the natural range of baseflows (lowest to highest). If possible, provide for the wet				
	season, and dry season.				
	What (in m ³ /s) is the present day range of baseflows (lowest to highest). If possible, provide for the wet season and dry season				
	Tor the wet season, and dry season.				

	EWR 8: Sand (Sand River)				
	Has the frequency of floods changed from natural?	No.			
ATE (HIG 'S)	Are the changes an increase or a decrease? If an				
DS	something else				
М С О Ц О Ц	Are there any changes in seasonality of the floods? And if yes, how.				
Ē	Why has the flooding regime changed?				
LARGE FLOODS (HIGH FLOWS)	Has the frequency of floods changed from natural?	No.			
	Are the changes an increase or a decrease? If an increase, is it due to dam releases, urban runoff, or something else.				
	Are there any changes in seasonality of the floods? And if yes, how.	No.			
	Why have the flooding changed?				
Have any fi so, what ar	equency analysis of floods been undertaken and if e the flood peaks (in m^3/s). E.g. 1:2 = X m^3/s etc	No.			
Any generation of?	I comments or anything else one should take note				

Figure A44 Flow duration curve for EWR 8

A3 HYDROLOGICAL CAUSES AND SOURCES UPSTREAM OF EWR SITES IN THE CROCOCILE AND SABIE SYSTEM

The information below is based on the hydrology generated through the Inkomati WAAS study. This has been refined in some instances in the WAAS study. Local knowledge was also used in this document, and to refine the HAI which is based purely on a comparison of present and virgin hydrology provided and no analysis of the accuracy of the hydrological data (*Pers comm.*, Denis Hughes). This data was compiled during December 2007 and updated in March 2009.

Problems identified in the hydrology during this assessment are indicated in the site by site description below for the Crocodile River system (Table 1.1) and the Sabie-Sand River system (Table 1.2).

EWR site	Virgin MAR (MCM)	Present Day (PD) MAR (MCM)	Impacts
			Trout farming and small dams in tributaries.
EWR 1	15.04	14.37	Dullstroom: 0.6 MCM use from a little dam which only affects low flows.
			Other tourism activities.
			Irrigation use: 0.8 MCM
EWR 2	46.57	45.54	Forestry use: 1 MCM
			EWR1: includes effects as upstream from EWR 1.
			Kwena Dam: Constant (i.e. not flood) release unless rivers are flowing high. Size
	101.10	404.051	of release is based on demand and varies from month to month. Higher than
EWR 3	191.12	164.851	natural in dry and late dry season. Will impact on moderate floods but the
			tributaries and spilling mitigate to small extent the impact.
			Between the dam and site: Some irrigation, forestry
			Elands River provides more natural diversity of flow and mitigates to some extent
			the impact of Kwena Dam.
			Forestry upstream of Nelspruit.
			Irrigation from Elands River confluence downstream of Nelspruit abstracts water
			immediately above the town in a canal. Also present a hydro power plant which
			diverts water from and then back to the river. In between Nelspruit off take and
	776.41		the hydropower returns, the river very dry.
EWR 4		537.75	Upstream of site: Large abstractions for Kanyamazane.
			Water quality problems from Nelspruit.
			Wit River: Over utilised especially for irrigation. Related water quality problems.
			NB: Kwena releases: The biggest demand is below EWR 4 and Kwena Dam is
			operated to supply users all the way to Komatipoort.
			Change in smaller floods: Due to cumulative effects from abstraction and forestry.
			Large floods: Frequency changes due to the Kwena Dam.
			All impacts above EWR 3 also included.
			Downstream of EWR 4: Large scale irrigation for sugar cane. Kaap River
		584.96	contributes but is also impacted on by large scale irrigation.
			Malelane has very small water usage.
			Matsulu township (border of KNP), also extract water at an off take.
EWR 5	1045.89		Phola township: Abstracted from the Sabie River, and then return flows enter the
LVING			Nsikasi (tributary) – water quality problems.
			Offtake DS of site : To canal, for mill, Malelane town and mostly irrigation.
			Kaap River: Irrigation and forestry.
			All impacts upstream of EWR 4 included.
EWR 6	1089.67	507.95	Mostly large scale irrigation.
L	1	1	l

Table A31 Summary of hydrology for the Crocodile River system

			International water use must also flow past this site.
			All impacts upstream from EWR 5.
			Forestry and irrigation.
EWR 7	179.25	84.6	River stops flowing (verified from observed record – perhaps less often than what has been modelled in the WAAS study.
1 PD flows include increased low flows during certain months, i.e. the relationship between virgin and PD flows			

PD flows include increased low flows during certain months, i.e. the relationship between virgin and PD flows does not reflect the change in hydrology.

Table A32 Summary of hydrology for the Sabie-Sand River sy

EWR site	Virgin MAR (MCM)	Present Day (PD) MAR (MCM)	Impacts		
			Forestry is a large impact: Approx. 30 MCM.		
EWR 1	140.18	108.9	Sabie town urban requirements: 1.3 MCM		
			Water quality – return flows from Sabie and possibly old mines.		
			Sabaan tributary enters Sabie River between EWR 1 and 2.		
EWR 2	262.11	194.52	Forestry starts to make place to irrigation.		
			All impacts upstream of EWR 1 and from the Mac Mac River included.		
			Hazyiew abstracts from Sabie River.		
	404.49	202.69	Irrigation.		
EVVRS	494.10	303.00	Abstraction for Phola in the Crocodile catchment.		
			All upstream impacts of EWR 1, 2, 4, 5 included.		
EWR 4	65.78	51.84	Upper catchment 100% forestry.		
			Inyaka Dam upstream.		
EWR 5	157.09	89.48	Releases to Sabie probably higher than virgin during some months. Steady release.		
EWR 6	44.99	28.73	Abstraction for both domestic use and irrigation. Domestic use abstractions now ceased as these are supplied from the Bushbuckridge transfer pipeline. Irrigation abstraction at the New Forest weir divert all the low flow resulting in very low flow at EWR6 during the dry winter months.		
EWR 7	28.79	12.09	Water is diverted at two weirs upstream of the site (Champagne and Dingleydale). During low flow conditions almost all the flow is diverted resulting in very low flow at EWR7. In addition, the small Acornhoek and Kasteel Dams are upstream of this site with added negative impacts.		
EWR 8	133.46	91.08	In addition to the abstractions referred to upstream of EWR 6 and 7, there is also a diversion weir which diverts flow into the Edinburgh Dam. The combined effect of all these diversions is that during dry winter months there is little or no flow at EWR 8. There are also net evaporative losses in the lower reaches of the Sand River which will result in low flows which escape abstraction works evaporating before reaching EWR 8.		

APPENDIX B: INSTREAM AND RIPARIAN HABITAT INTEGRITY Ms MD Louw, Water for Africa

B1 SABIE-SAND AND CROCODILE SYSTEMS IHI

The Instream Index of Habitat Integrity (IIHI) and the Riparian Index of Habitat Integrity (RIHI) is based on the methods outlined in Kleynhans *et al.*, 2008.

B1.1 DATA AVAILABILITY

The IHI undertaken was ground-based. No recent or good quality Instream Habitat Integrity (IHI) DVDs were available. The following data was used to assess the IHI:

- Personal groundbased observations.
- Local knowledge.
- Hydrological assessments.
- Water quality assessments.
- Land cover assessments (Department of Water Affairs and Forestry (DWAF)).
- Google Earth (mostly high resolution).
- Various maps.

Confidence of Data: 4. The confidence in the data is high due to the systems being reasonably assessment and the high quality of Google Earth available for large sections of the study area.

B1.2 REFERENCE CONDITION

Reference conditions are not explicitly described in the IHI at this stage. The model is based on an evaluation of impacts (scale and severity) and this forms the basis of the ratings supplied which measure change from natural.

B2 CROCODILE RIVER IHI

B2.1 MRU CROC A: EWR 1 AND 2

The Instream and Riparian IHI results are illustrated in Figure B1 and summarised in Table B1.

Figure B1 MRU Croc A: Instream and Riparian IHI

Table B1Summary of the causes and sources for the change in reference condition for
EWR 1

PES	Causes	Sources	F ¹ /NF ²	Conf			
INSTREAM							
	Change in base flows.	Abstractions.	F				
	Increase in sediment (bed modification).	Land use.	NF and F				
В	Change in bank structure of the marginal zone (Incision).	Erosion and channel incision – land use.	NF	3.6			
	Change in lateral connectivity – floodplain connection.	Incision of channel (change in sediment transport).	NF and F				
RIPARIAN							
В	Erosion.	Land use.	NF	3.9			
1	Flow related 2 Non flow relate	d					

B2.2 MRU CROC B: EWR 3

The Instream and Riparian IHI results are illustrated in Figure B2 and summarised in Table B2.

Figure B2 MRU Croc B: Instream and Riparian IHI

Table B2Summary of the causes and sources for the change in reference condition for
EWR 3

PES	Causes	Sources	F/NF	Conf		
INSTREAM						
	Change in base flows and floods.	Kwena Dam and releases.	F			
	Water clarity.	Flow and land use.	F and NF			
С	Sedimentation resulting in bed modification.	Change in flow regime and Kwena Dam.	F	3.5		
	Bank Modification.	Non marginal zone – landuse and agriculture.	NF			
RIPARIAN						
С	Change in base flows and floods.	Kwena Dam and releases.	F			
	Alien vegetation especially in the non-marginal zone.	Alien infestation and land use.	F and NF	4		

B2.3 MRU CROC RAU D.1: EWR 4

The Instream and Riparian IHI results are illustrated in Figure B3 and summarised in Table B3.

Figure B3 MRU Croc RAUD: Instream and Riparian IHI

Table B3Summary of the causes and sources for the change in reference condition for
EWR 4

PES	Causes	Sources	F/NF	Conf			
INSTREAM							
С	Change in base flows and especially floods.	Kwena Dam and releases and abstractions.	F				
	Salts, nutrients and toxics.	Land use.	NF	3.3			
	Bed and bank modification due to scouring, erosion and roads.	Constant releases from the dam, land use.	F & NF				
RIPARIAN							
С	Invasive and alien vegetation in non-marginal zone.	Land use and increase in flow.	F & NF	3.25			
PES	Causes	Sources	F/NF	Conf			
-----	-----------------------	------------------------------------	------	------			
	Lateral connectivity.	Extensive roads adjacent to river.	NF				

B2.4 MRU CROC E: EWR 5

The Instream and Riparian IHI results are illustrated in Figure B4 and summarised in Table B4.

Figure B4 MRU Croc E: Instream and Riparian IHI

Table B4Summary of the causes and sources for the change in reference condition for
EWR 5

PES	Causes	Sources	F/NF	Conf			
	INSTREAM						
	Change in base flows and especially floods.	Abstractions for irrigation (sugar cane and orchards).	F				
С	Salts, nutrients and toxics.	Land use.	NF	3.3			
	Bed and bank modification due to scouring, erosion and roads.	Constant releases from the dam, land use.	F & NF				
RIPARIAN							

PES	Causes	Sources	F/NF	Conf
6	Substrate exposure, erosion.	Land use.		2.2
C	Lateral connectivity.	Roads and lands.	INI	3.2

B2.5 MRU CROC E: EWR 6

The Instream and Riparian IHI results are illustrated in Figure B5 and summarised in Table B5.

Figure B5 MRU Croc E: Instream and Riparian IHI

Table B5Summary of the causes and sources for the change in reference condition for
EWR 6

PES	Causes	Sources	F/NF	Conf		
	INS	STREAM				
	Change in base flows and especially floods.	Abstractions for irrigation (sugar cane and orchards).	F	3.4		
C/D	Salts, nutrients and toxics.	Land use.	NF			
0,0	Bed and bank modification due to scouring, erosion sedimentation, sugar cane and veg removal on banks.	Land use, decreased flows.	F & NF			
RIPARIAN						
	Substrate exposure, erosion.	Land use.	NE	2.2		
C/D	Lateral connectivity.	Roads and lands.		3.2		

B2.6 MRU KAAP RAU A.1: EWR 7

The Instream and Riparian IHI results are illustrated in Figure B6 and summarised in Table B6.

Figure B6 MRU Kaap RAU A.1: Instream and Riparian IHI

Rivers for Africa December 2009

Table B6Summary of the causes and sources for the change in reference condition for
EWR 7

PES	Causes	Sources	F/NF	Conf			
INSTREAM							
	Change in hydrology (decreased flows).	Abstractions.	F	3			
С	Longitudinal connectivity due to change in hydrology.	Abstractions and zero flows.					
RIPARIAN							
с	Decreased base flows and zero flows.	Abstractions.	F	2.0			
	Alien vegetation.	Land use.	NF	2.8			

B2.7 CROCODILE RIVER INSTREAM IHI SUMMARY

The results are compared in the following tables and graphics.

Table B7 Ratings for the each MRU and EWR site – Crocodile system

	MRU	MRU	MRU	MRU	MRU	MRU
			Croc	Croc E	Croc E	Kaap
INSTREAM IHI	Croc A	Croc B	RAU D1	(EWR 5)	(EWR 6)	RAU A1
Base Flows	-1.5	2.0	-1.5	-3.0	-3.0	-4.0
Zero Flows	0.0	0.0	0.0	0.0	1.0	-2.0
Floods	-0.5	-2.0	-2.5	-3.0	-3.0	-2.5
HYDROLOGY RATING	0.6	1.0	1.0	1.6	2.1	4.0
рН	0.5	0.5	2.0	2.0	2.0	1.0
Salts	0.0	0.0	2.0	2.0	2.0	1.0
Nutrients	1.0	1.0	2.0	2.0	2.0	1.5
Water Temperature	0.5	1.0	2.0	2.0	2.0	0.5
Water clarity	1.0	2.0	2.0	2.0	2.0	1.0
Oxygen	0.5	0.5	2.0	2.0	2.0	0.0
Toxics	0.0	1.0	2.0	2.0	2.0	1.0
PC RATING	0.5	0.9	2.0	2.0	2.0	0.8
Sediment	1.5	2.5	1.5	3.0	3.0	1.0
Benthic Growth	0.5	2.0	1.5	1.5	2.0	1.0
BED RATING	1.1	2.3	1.5	2.5	2.6	1.0
Marginal	1.5	1.5	1.0	2.5	2.5	1.0
Non-marginal	0.5	2.0	1.5	2.0	2.0	0.5
BANK RATING	1.1	1.7	1.2	2.3	2.3	0.8
Longitudinal Connectivity	-1.0	-1.0	1.0	0.5	0.5	2.0
Lateral Connectivity	-1.5	-1.5	0.5	1.0	1.0	0.5
CONNECTIVITY RATING	1.0	1.1	0.9	0.6	0.7	1.7
INSTREAM IHI %	84.0	72.6	73.1	64.1	60.9	69.7
INSTREAM IHI EC	B	С	С	С	C/D	С
INSTREAM CONFIDENCE	3.6	3.5	3.3	3.3	3.4	3.0

Figure B7 Instream Metric group ratings for each MRU and EWR site – Crocodile system

Figure B8 Summary of IHI Instream categories – Crocodile system

B2.8 CROCODILE RIVER RIPARIAN IHI SUMMARY

The results are compared in the following tables and graphics.

Table B8 Ratings for the each MRU and EWR site – Crocodile system

	MRU	MRU	MRU	MRU	MRU	MRU
			Croc	Croc E	Croc E	Kaap
RIPARIAN IHI	Croc A	Croc B	RAU D1	(EWR 5)	(EWR 6)	RAU A1
Base Flows	-0.5	2.0	2.0	2.0	2.0	-2.5
Zero Flows	0.0	0.0	0.0	0.0	0.0	-1.0
Moderate Floods	-0.5	3.0	2.0	-2.0	-2.0	2.0
Large Floods	-0.5	-2.0	-2.0	-2.0	-2.0	-2.0
HYDROLOGY RATING	0.3	1.6	1.4	1.4	1.5	1.8
Substrate Exposure (marg)	0.5	0.5	1.5	1.5	1.5	0.5
Substrate Exposure (non-marg)	0.5	1.0	2.5	2.5	3.0	1.5
Invasive Alien Vegetation (marg)	0.5	1.5	1.0	1.5	1.5	3.0
Invasive Alien Vegetation (non-marg)	1.0	2.5	3.0	2.0	2.0	2.0
Erosion (marg)	1.5	0.5	0.5	1.0	2.0	0.5
Erosion (non-marg)	0.5	1.5	1.5	2.0	3.0	1.0
Physico-Chemical (marg)	0.0	0.0	0.0	2.0	2.0	2.0
Physico-Chemical (non-marg)	0.0	0.0	0.0	1.0	1.0	1.0
Marginal	1.5	1.5	1.5	2.0	2.0	3.0
Non marginal	1.0	2.5	3.0	2.5	3.0	2.0
BANK STRUCTURE RATING	1.4	1.9	2.1	2.2	2.5	2.6
Longitudinal Connectivity	-0.5	-0.5	-1.0	-1.0	-1.0	-0.5
Lateral Connectivity	-1.0	-1.0	-2.5	-3.0	-3.5	-0.5
CONNECTIVITY RATING	0.7	0.7	1.5	1.6	2.0	0.5
RIPARIAN IHI %	82.4	69.3	65.5	63.9	59.1	62.6
RIPARIAN IHI EC	В	С	С	С	C/D	С
RIPARIAN CONFIDENCE	3.9	4.0	3.3	3.2	3.2	2.8

Figure B9 Riparian Metric group ratings for each MRU and EWR site – Crocodile system

Figure B10 Summary of IHI Riparian categories – Crocodile system

B3 SABIE – SAND RIVER IHI

B3.1 MRU SABIE A: EWR 1

The Instream and Riparian IHI results are illustrated in Figure B11 and summarised in Table B9.

Figure B11 MRU Sabie A: Instream and Riparian IHI

Table B9Summary of the causes and sources for the change in reference condition for
MRU Sabie A EWR 1

PES	Causes	Sources	F/NF	Conf		
	INS	STREAM				
	Reduction in flow.	Forestry, small abstractions for Sabie.	F			
B/C	Nutrients.	Pollution possibly from Sabie and forestry.	NF	3.2		
	Non-marginal bank modification (erosion).	Forestry.				
RIPARIAN						
B/C	Reduction in floods.	Forestry.	F	3.1		
	Bank structure modification (erosion).	Aliens and forestry.	NF	3.1		

B3.2 MRU SABIE RAU A.2: EWR 2

The Instream and Riparian IHI results are illustrated in Figure B12 and summarised in Table B10.

Figure B12 MRU Sabie RAU A2: Instream and Riparian IHI

Table B10Summary of the causes and sources for the change in reference condition for
MRU Sabie RAU A2

PES	Causes	Sources	F/NF	Conf			
	INSTREAM						
	Base flow decrease.	Forestry, irrigation.	F				
с	Bed modification (increased sedimentation).	Forestry, roads, irrigation.		2.9			
	Bank modification in the non-marginal zone.	Roads, forestry, lands, recreational areas, housing.	NF				
	RIF	PARIAN					
	Decrease in floods.	Forestry and abstractions.	F				
с	Substrate exposure (mostly in non-marginal zone).			2.2			
	Invasive alien veg (mostly in non-marginal zone).	Forestry, lands, recreational areas.	NF	3.2			
	Erosion (mostly in non-marginal zone).						

B3.3 MRU SABIE RAU B.1: EWR 3

The Instream and Riparian IHI results are illustrated in Figure B13 and summarised in Table B11.

Figure B13 MRU Sabie RAU B.1: Instream and Riparian IHI

Table B11Summary of the causes and sources for the change in reference condition for
MRU Sabie RUA B.1

PES	Causes	Sources	F/NF	Conf			
INSTREAM							
В	Reduction in flows.	Upstream abstraction.	F				
	Water clarity.		NF	3.1			
	Sedimentation.	Land use.					
RIPARIAN							
В	Change in moderate floods.	Forestry and abstraction, Inyaka Dam in Marite.	F				
	Erosion and substrate exposure in non- marginal zone.	Upstream land use.	NF	3.2			

B3.4 MRU MACMAC: EWR 4

The Instream and Riparian IHI results are illustrated in Figure B14 and summarised in Table B12.

Figure B14 MRU MacMac: Instream and Riparian IHI

Table B12Summary of the causes and sources for the change in reference condition for
MRU MacMac

PES	Causes	Sources	F/NF	Conf			
	INSTREAM						
	Decrease in base flows.	Forestry.	F				
В	Nutrients increase.	Forestry, Graskop sewage.		3.5			
	Non-marginal bank modification.	Forestry.	INF				
RIPARIAN							
A /D	Moderate floods decrease.	Forestry					
A/B	Erosion (bank structure modification).	Forestry	INF	3.2			

B3.5 MRU MARITE: EWR 5

The Instream and Riparian IHI results are illustrated in Figure B15 and summarised in Table B13.

Figure B15 MRU Marite: Instream and Riparian IHI

Table B13Summary of the causes and sources for the change in reference condition for
MRU Marite

PES	Causes	Sources	F/NF	Conf		
INSTREAM						
	Increase in base flows at some stages.	Releases down river from Inyaka Dam.				
	Decrease in floods.	Inyaka Dam.	F	3		
С	Water temperature and clarity.	Inyaka Dam and releases.				
	Sedimentation.	Inyaka Dam.				
	Bank modification, marginal and non-marginal. Changes in floods.	Veg structure changes - Inyaka Dam.				
RIPARIAN						
	Decrease in floods.	Inyaka Dam.	F			
B/C	Vegetation removal and subsistence agriculture, housing.	Land use.	NF	3.2		

B3.6 MRU MUTLUMUVI: EWR 6

The Instream and Riparian IHI results are illustrated in Figure B16 and summarised in Table B14.

Figure B16 MRU Mutlumuvi: Instream and Riparian IHI

Table B14Summary of the causes and sources for the change in reference condition for
EWR 6

PES	Causes	Sources	F/NF	Conf			
	INSTREAM						
	Decrease in low flows.	Abstraction.	F				
С	Bed modification.	Land use (over grazing, trampling, veg removal etc).	NF	2.7			
Bank modification.		See above.					
	RIPARIAN						
С	Substrate exposure and erosion in the non- marginal zone.	Land use (over grazing, trampling, veg removal etc).	NF	3			

B3.7 MRU TLULANDIZEKA A: EWR 7

The Instream and Riparian IHI results are illustrated in Figure B17 and summarised in Table B15.

Figure B17 MRU Tlulandizeka A: Instream and Riparian IHI

Table B15Summary of the causes and sources for the change in reference condition for
MRU Thulandizeka A (EWR 7)

PES	Causes	Sources	F/NF	Conf			
	INSTREAM						
	Decrease in low flows.	Abstraction.	F				
C/D	Bed modification.	Land use (over grazing, trampling, veg removal etc.).		2.7			
	Bank modification. See above.		NF				
Nutrients.		Peri-urban land use.					
RIPARIAN							
С	Substrate exposure and erosion in the non - marginal zone.	Land use (over grazing, trampling, veg removal etc.).	NF	3.2			

B3.8 MRU SAND RAU B.1: EWR 8

The Instream and Riparian IHI results are illustrated in Figure B18 and summarised in Table B16.

Figure B18 MRU Sand RAU B.1: Instream and Riparian IHI

Table B16Summary of the causes and sources for the change in reference condition for
MRU Sand RAU B.1

PES	Causes	Sources	F/NF	Conf	
INSTREAM					
С	Decrease in flows.	Abstraction.	F	2.9	
RIPARIAN					
B/C	Decrease in moderate floods.	Abstraction, weirs, small dams.	F	2.8	

B3.9 SABIE – SAND INSTREAM IHI SUMMARY

The results are compared in the following tables and graphics.

Table B17	Ratings for the each MRU and EWR site –Sabie - Sand system
-----------	--

	MRU							
		Sable	Sable			Multumu	Upper	Sand
	Sabie A	RAU A.2	RAU B.1	MacMac	Marite	vi A	Sand A	RUA B.1
INSTREAM IHI	(EWR 1)	(EWR 2)	(EWR 3)	(EWR 4)	(EWR 5)	(EWR 6)	(EWR 7)	(EWR 8)
Base Flows	-1.5	-2.5	-1.5	-2.0	-3.0	-2.5	-2.5	3.0
Zero Flows	0.0	0.0	0.0	0.0	0.0	-1.0	-1.0	1.0
Floods	-1.0	-1.0	-1.5	-1.0	-3.0	-1.0	-2.0	-3.0
HYDROLOGY RATING	0.7	1.0	0.8	0.8	1.6	1.4	1.7	2.1
рН	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
Salts	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
Nutrients	2.0	1.5	1.0	1.5	1.5	1.5	2.0	1.0
Water Temperature	0.0	0.5	0.0	1.0	2.0	0.5	1.0	1.0
Water clarity	0.5	1.0	1.5	0.5	2.0	1.5	1.5	1.5
Oxygen	0.0	0.5	0.0	0.0	1.0	0.5	0.5	0.5
Toxics	0.5	0.5	0.5	0.5	0.5			
PC RATING	1.0	1.0	0.5	1.0	2.0	1.0	1.5	1.0
Sediment	1.5	2.0	1.5	1.0	3.0	3.0	3.0	1.5
Benthic Growth	1.5	1.0	1.0	0.5	1.5	2.0	2.0	0.5
BED RATING	1.5	1.7	1.3	0.8	2.5	2.6	2.6	1.1
Marginal	1.0	1.0	0.5	0.5	2.5	2.0	2.5	1.5
Non-marginal	2.0	2.5	1.0	2.0	2.0	2.0	2.5	1.0
BANK RATING	1.4	1.6	0.7	1.1	2.3	2.0	2.5	1.3
Longitudinal Connectivity	0.0	0.5	0.5	0.5	0.5	1.5	2.0	1.0
Lateral Connectivity	1.0	1.5	0.5	0.5	1.0	1.0	1.5	1.0
CONNECTIVITY RATING	0.2	0.7	0.5	0.5	0.6	1.3	2.0	1.0
INSTREAM IHI %	81.5	76.9	84.4	83.2	64.1	67.4	60.5	73.0
INSTREAM IHI EC	B/C	С	В	В	С	С	C/D	С
INSTREAM CONFIDENCE	3.3	2.9	3.1	3.5	3.3	2.7	2.7	2.9

Figure B19 Instream Metric group ratings for each MRU and EWR site – Sabie – Sand system

Figure B20 Summary of IHI Instream categories – Sabie – Sand system

B3.10 SABIE - SAND RIPARIAN IHI SUMMARY

The results are compared in the following tables and graphics.

	MRU							
		Sabie	Sabie			Multumu	Upper	Sand
	Sabie A	RAU A.2	RAU B.1	MacMac	Marite	vi A	Sand A	RUA B.1
RIPARIAN IHI	(EWR 1)	(EWR 2)	(EWR 3)	(EWR 4)	(EWR 5)	(EWR 6)	(EWR 7)	(EWR 8)
Base Flows	-0.5	-1.0	1.0	-0.5	1.5	-1.5	-1.5	1.5
Zero Flows	0.0	0.0	0.0	0.0	0.0	-0.5	-0.5	0.5
Moderate Floods	-1.5	-2.0	-2.0	-1.5	-3.0	-2.0	-2.0	-3.0
Large Floods	0.0	0.0	-1.0	0.0	-2.0	-0.5	-1.0	-1.0
HYDROLOGY RATING	0.5	0.7	1.0	0.5	1.6	1.1	1.2	1.5
Substrate Exposure (marg)	0.0	1.0	0.0	0.0	0.5	2.0	2.0	1.0
Substrate Exposure (non-marg)	1.0	2.5	1.0	0.5	1.0	3.0	3.0	1.5
Invasive Alien Vegetation (marg)	1.0	1.5	0.5	0.0	0.5	1.5	1.0	0.0
Invasive Alien Vegetation (non-marg)	2.0	2.0	0.5	0.5	1.0	2.0	1.5	0.5
Erosion (marg)	0.5	0.5	0.5	0.5	0.5	1.5	1.5	0.5
Erosion (non-marg)	2.0	2.0	1.0	1.0	1.0	3.0	3.0	1.0
Physico-Chemical (marg)	0.0	0.5	0.5	0.0	0.0	0.0	1.5	0.5
Physico-Chemical (non-marg)	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.5
Marginal	1.0	1.5	0.5	0.5	0.5	2.0	2.0	1.0
Non marginal	2.0	2.5	1.0	1.0	1.0	3.0	3.0	1.5
BANK STRUCTURE RATING	1.4	1.9	0.8	0.7	0.8	2.5	2.2	1.3
Longitudinal Connectivity	-1.0	0.0	0.0	0.0	0.0	-1.0	-1.0	0.0
Lateral Connectivity	-1.0	-1.0	-1.0	-1.0	-1.0	-1.5	-1.5	0.0
CONNECTIVITY RATING	1.0	0.3	0.4	0.3	0.4	1.2	1.2	0.0
RIPARIAN IHI %	80.1	77.2	85.0	89.3	80.8	65.3	67.3	79.1
RIPARIAN IHI EC	B/C	С	В	A/B	B/C	С	С	B/C
RIPARIAN CONFIDENCE	3.1	3.2	3.2	3.2	3.2	3.0	3.0	2.8

Table B18 Ratings for the each MRU and EWR site –Sabie - Sand system

Rivers for Africa December 2009

Figure B21 Riparian Metric group ratings for each MRU and EWR site – Sabie – Sand system

Figure B22 Summary of IHI Riparian categories – Sabie – Sand system

B4 REFERENCES

Kleynhans, C.J., Louw, M.D., and Graham, M. 2008. Module G: EcoClassification and EcoStatus determination in River EcoClassification: Index of Habitat Integrity (Section 1, Technical manual) Joint Water Research Commission and Department of Water Affairs and Forestry report. WRC Report No. TT 377-08.

APPENDIX D: PHYSICO-CHEMICAL VARIABLES

Dr P-A Scherman, Scherman Consulting

C1 INTRODUCTION

C1.1 CATCHMENT CONTEXT

The Internal Strategic Perspective (ISP) produced for the Inkomati Water Management Area (WMA) (DWAF, 2004a), concluded that the quality of the water in the Crocodile/Sabie sub-area (Figure C1) is currently good, but is threatened by a number of activities, e.g. mining activities. Land-use in the Inkomati WMA mainly consists of urban and semi-urban populations, with associated activities. A large number of rural settlements exist in the Mhala, Mapulanneng, Nsikazi, Nkomati and Mswati regions. Important urban centres in the WMA are Nelspruit, White River, Komatipoort, Carolina, Badplaas, Barberton, Sabie, Bushbuckridge, KaNyamazane and Matsulu. Although future growth in the population is expected to be moderate and to be concentrated in the urban areas, with a decline in some rural areas (DWAF, 2004a), this growth will result in deteriorating water quality conditions if not associated with adequate sanitation facilities properly managed.

C1.1.1 Crocodile River sub-area

The Crocodile River catchment is dominated by irrigation and forestry, with it being one of the most densely forested catchments in the country. There is an estimated 42 300 ha of irrigation in the catchment and an estimated 1 775 km² of exotic forests (DWAF, 2004a). These two activities are also the major users of water in the catchments. Industrial water use in the catchment is limited and consists mostly of the Sappi paper mill at Ngodwana and the sugar mills at Malelane and Komatipoort. The water requirements of the Ngodwana paper mill are supplied from the Ngodwana Dam, which is situated in the Elands catchment, while the water requirements of the Malelane sugar mill are abstracted from the Crocodile River. A large number of manufacturing activities are situated in and around Nelspruit and industrial development is expanding rapidly. Development opportunities have been identified especially in the steel, chemicals, food, wood products, paper and pulp industries. Activities in the area have lead to a number of research projects, particularly focusing on the impacts of the Ngodwana paper mill on the aquatic ecosystem, and on the rivers of the Kruger National Park. The urban requirements of the Crocodile River.

The catchments are not well developed from a water resources point of view, with only one major dam, the Kwena Dam, in the upper catchment. There are a number of smaller dams (e.g. Witklip, Ngodwana, Klipkoppie and Longmere dams) in the central portion of the catchment, with two additional dam options (i.e. Mountain View Dam on the Kaap River and Montrose Dam at the confluence of the Elands and Crocodile rivers) are being considered. The water requirements exceed the available resource, and the catchment is considered to be highly stressed, particularly considering the sub-area's potential for economic growth (DWAF, 2004a). Management will have to be effective to achieve the potential of this area (e.g. the removal of invasive alien parts in the catchment), while still meeting the allocations for Ecological Water Requirements (EWR) and international treaties (i.e. the IncoMaputo Water Use agreement).

The water resources in the area are derived mostly from run-of-river flows but are augmented by the Kwena Dam which supplements the run-of-river abstractions during periods of low flow. Smaller dams in the area contribute significantly to the yield (DWAF, 2004a).

The overall ecological status of the Crocodile River in this ecoregions is Good to Fair, with most of the impacts occurring in the riparian zone (River Health Programme, 2001). According to the 2004 ISP, the water quality in the Crocodile sub-area is generally good although some deterioration of the quality in the lower Kaap River (often high levels of arsenic) and lower Crocodile River is observed. This is due to return flows from upstream users including irrigation, urban areas and old gold mining activities. Irrigation return seepage is noticeable during periods of low flow. The potential water quality problems emanating from the SAPPI paper mill at Ngodwana is probably the most serious water quality problem in the catchments. Effluent has been disposed of through irrigation for a number of years but the soil has become saturated with salts (especially chlorine) and these leach out into the Elands River and then enter the Crocodile River (DWAF, 2004a).

C1.1.2 Sabie River sub-area

The Sabie River sub-catchment is dominated by irrigation and forestry, although urban, peri-urban and rural requirements and activities are becoming increasingly significant. The Kruger National Park is positioned at the lower end of the catchment before the river flows into Mozambique.

The surface water quality in the Sabie River sub-catchment is generally Good with no immediate threats (DWAF, 2004a), although polluted water entering the Kruger National Park is a major concern. Return flows in the Sabie sub-catchment are limited, and are derived primarily from irrigation.

Water use along this river system is diverse. The Sabie River within the KNP has previously been described as the most pristine system within South Africa with much of its 110 km remaining free from any direct alteration (Moon *et al.*, 1997). However, it was only in the 1940's that action was taken by the Mining Department against pollution and the river recovered to become the most biologically diverse in South Africa, due to recolonisation from the tributaries which were unaffected by gold mining (Pienaar, 1985).

A variety of different activities affects and takes place along this river system. The upper catchment area has already been exploited as far as possible due to commercial forestry plantations of exotic tree species, especially *Pinus* and *Eucalyptus* species. In 1990 more than 71 100 ha (16%) of the total catchment area was afforested, whilst 11 300 ha (1.8%) consisted of irrigated crops. The principal crops grown particularly in the lower catchment are bananas, avocados, citrus, paw paws and vegetables (Chunnett, Fourie and Partners, 1990).

Water quality monitoring for the past ten years has shown that the waters are suitable for irrigation, livestock watering and domestic consumption (Weeks *et al.*, 1996). An analysis by Van Veelen (1991) concluded that the Sabie River is the least mineralized of the rivers in the KNP. It was also found that the pH was below 7.0 for a considerable part of the year thus causing the system to be poorly buffered. These facts coupled together with observed low Total Dissolved Solids (TDS) concentrations make this a stable but sensitive system, should changes occur in the catchment area.

C1.1.3 Sand River sub-area

The water resources of the Sand River sub-catchment are limited to the run-of-river yield and the yield of the few farm dams in the catchment. The rainfall in the Sand River sub-catchment is lower

than in the Sabie River sub-catchment and the runoff, even under natural conditions, is low by comparison (DWAF, 2004a).

The major water requirements in the Sand River sub-catchment are the irrigation and urban sectors, making up an estimated 44% and 36% of the total water requirement in this sub-catchment respectively. The afforested area in the Sand River sub-catchment is estimated to be 75 km², while the irrigation requirements are based on an irrigated area of 26 km² (DWAF, 2004a).

Irrigation is the largest user of water in the Sand River sub-catchments. Irrigators mostly access the water in the catchment as run-of-river, diverting it via small weirs into canals. A few significant farm dams, such as the Edinburgh, Champagne and Orinoco dams add to the yield of the system. The main irrigation schemes are the Dingleydale/New Forest scheme, the Champagne Citrus Estate and Allandale Citrus.

The surface water quality in the Sand River sub-catchment is not as good as in the Sabie River sub-catchment due to over-abstraction which reduces the natural assimilative capacity of the river. Occasional elevated levels of nutrients in the Sand River are noted, with informal housing developments a suspected cause. The large number of rural settlements which rely on pit latrines is cause for concern as far as ground-water pollution goes but to date there have been no reported incidences of groundwater pollution (DWAF, 2004a). The Sand River sub-catchment is a relatively dry catchment with limited water resources but a large semi-urban population. The water requirements in the catchment are mostly for domestic use and irrigation. The water resources of the catchment are not sufficient to meet the requirements, even without taking the ecological Reserve into account, and irrigators in this catchment have experienced serious deficits in the past. With the support that is now available from the Inyaka Dam. In practice however, the transfer capacity is currently insufficient and the distribution of the transferred water inadequate. A lot of infrastructure development is therefore still required to relieve water shortages in this catchment.

There is a limited amount of afforestation in the catchment (75 km², with afforestation being converted back to natural vegetation for conservation, which should have a positive impact on the riverine environment through increased river flow. The Sand River is also crucial to the viability of some of the commercial wildlife ventures in the Sabi-Sand Reserve, which is the most downstream recipient of the Sand River (DWAF, 2004a).

Figure C1 Locality map showing the position of the EWR sites, additional water quality sites and gauging weirs

Rivers for Africa December 2009

C2 METHODS AND APPROACH

C2.1 DATA SELECTION

Gauging weirs available in the study area are shown in the Tables C1 to C3 below; data record refers to either hydrological or water quality data records. Data was evaluated and the data suitable for the study selected and shown in Table C4 per EWR site. The position of gauging weirs is shown in Figure C1.

Station	Place	Latitude	Longitude	Data record
X2H003	Krokodil River @ Broedersvrede	25 29 17.1	31 09 29.2	
X2H004	Krokodil River @ Nelspruit	25 27 02.2	30 57 52.2	1923-10-09 to 1928-12-31
X2H006	Krokodil River @ Karino	25 28 11.2	31 05 17.3	1929-10-02 to 2007-05-17
X2H013	Krokodil River @ Montrose	25 26 55.1	30 42 42.4	1959-01-21 to 2007-07-13
X2H016	Krokodil River @ Tenbosch	25 21 49.9	31 57 20.6	1960-08-24 to 2007-05-23
X2H017	Krokodil River @ Kruger National Park	25 26 18.2	31 38 04.3	1959-08-28 to 1998-09-01
X2H032	Krokodil River @ Weltevrede	25 30 51.1	31 13 28.3	1968-09-15 to 2007-07-16
X2H033	Krokodil River @ Sterkdoorn	25 22 38.2	30 26 46.2	1970-07-06 to 1992-05-15
X2H048	Krokodil River @ Kruger National Park	25 27 37.2	31 32 07.3	
X2H049	Krokodil River @ Kruger National Park	25 20 02.2	31 48 52.3	
X2H050	Krokodil River @ Kruger National Park	25 21 39.2	31 53 39.3	
X2H074	Krokodil River @ Goedehoop	25 24 32.2	30 18 59.1	
X2H075	Krokodil River @ Sterkspruit	25 26 32.2	30 53 14.2	
X2H076	Krokodil River @ Lions Club	25 27 47.1	30 59 54.2	
X2H077	Krokodil River @ Krokodilpoort	25 29 52.1	31 10 44.2	
X2H078	Krokodil River @ Kaapmuiden	25 32 17.1	31 18 39.3	
X2H091	Krokodil River@At Rivulet @ Barclays Vale	25 25 18.2	30 45 24.2	
X2H092	Krokodil River @ Boschrand	25 26 52.2	30 57 03.2	
X2H093	Krokodil River @ Boschrand	25 27 42.1	30 57 13.2	
X2H094	Krokodil River @ Friedenheim	25 27 23.2	31 00 47.2	
X2H095	Krokodil River @ Boschrand	25 27 41.1	30 57 54.2	
X2H096	Crocodile at Montrose	25 07 18.2	30 43 33.4	2004-09-15 to 2007-07-13
X2H097	Crocodile River at Esselen	25 29 52.3	31 28 33.9	

Table C1 Inkomati gauging weirs: Crocodile River system

Table C2 Inkomati gauging weirs: Kaap River system

Station	Place	Latitude	Longitude	Data record
X2H007	Kaap River @ Dolton	25 32 30.1	31 18 59.3	1930-06-25 to 1947-12-01
X2H022	Kaap River @ Dolton	25 32 35.6	31 19 00.1	1960-08-31 to 2007-07-16
X2H024	Suidkaap River @ Glenthorpe	25 42 42.6	30 50 06.0	1964-09-25 to 2007-07-11
X2H031	Suidkaap River @ Bornmans Drift	25 43 48.9	30 58 42.2	1966-06-23 to 2007-07-11
X2H083	South Kaap River @ Dixie	25 42 54.1	31 03 26.2	
X2H084	South Kaap River @ Dixie	25 42 46.1	31 03 32.2	
X2H085	Kaap River @ Italian Farm	25 40 04.1	31 07 52.2	
X2H086	Kaap River @ Bon Accord	25 40 25.1	31 10 12.2	
X2H087	Kaap River @ Bon Accord	25 40 49.1	31 10 54.2	
X2H088	Kaap River @ Lovedale	25 38 57.1	31 14 32.2	
X2H089	Kaap River @ Caraceto (Tonetti)	25 34 49.1	31 18 24.3	
X2H080	North Kaap River @ Segalla	25 39 10.1	31 03 37.2	

Table C3Inkomati gauging weirs: Sabie-Sand River system

Station	Place	Latitude	Longitude	Data record
X2H068	Sand River @ Witklip Forest Res.	25 14 16.2	30 53 58.2	1969-10-20 to 2007-07-11
X3H006	Sabie River @ Perry's Farm	25 01 50.3	31 07 35.2	1958-09-04 to 2000-01-19
X3H008	Sand River @ Exeter	24 46 12.1	31 23 19.0	1967-09-01 to 2007-03-27
X3H012	Sabie River @ Kruger National Park	25 01 07.3	31 14 59.3	
X3H013	Sabie River @ Kruger National Park	24 59 02.3	31 35 14.3	
X3H014	Sabie River @ Kruger National Park	24 57 20.3	31 43 01.3	
X3H015	Sabie River @ Lower Sabie Rest Camp	25 08 58.3	31 56 26.4	1986-12-09 to 2007-03-27
X3H021	Sabie River @ Kruger Gate	24 58 06.5	31 30 55.5	1990-11-15 to 2007-05-23

Table C4Water quality data used for the EWR assessment

EWR site	Station	RC	PES	Frequency of monitoring
		Sabie – Sand system		
EWR 1	X3H001Q01	n = 82 (1977 - 1979)	n = 42 (2004 - 2007)	Monthly
EWR 2	X3H006Q01	n = 149 (1976 - 1979)	n = 77 (2004 - 2007)	Bi - monthly
EWR 3	X3H006Q01: RC X3H013Q01: PES	X3H006Q01 n = 149 (1976 - 1979)	X3H013Q01 n = 39 (1991 - 1999)	Bi - monthly Bi - monthly
EWR 4, Mac Mac	X3H003Q01	n = 48 (1977 - 1979)	n = 56 (2004 - 2007)	Monthly
EWR 5, Marite	X3H011Q01	n = 84 (1979 - 1981)	n = 129 (2004 - 2007)	Weekly
EWR 6, Mutlumuvi				
EWR 7, Tlulandziteka		EVVR o and used on - sile d	ala.	
EWR 8, Sand	X3H008Q01	n = 50 (1977 - 1979)	n = 44 (2003 - 2006)	Monthly
		Crocodile – Kaap system	ı	
EWR 1	Extrapolated from	EWR 2 and used on - site d	ata	
EWR 2	X2H074Q01: PES only	Default benchmark tables	n = 9 (1992 - 1994)	Monthly, but intermittent
EWR 3	X2H013Q01	n = 170 (1977 - 1980)	n = 79 (2004 - 2007)	Bi - monthly
EWR 4	X2H032Q01	n = 88 (1977 - 1980)	n = 108 (2004 - 2007)	Weekly
EWR 5	X2H017Q01	n = 125 (1977 - 1980)	n = 114 (2004 - 2007)	Weekly
EWR 6	X2H016Q01	n = 163 (1977 - 1980)	n = 119 (2004 - 2007)	Weekly
EWR 7	X2H022Q01	n = 96 (1977 - 1981)	n = 174 (2004 - 2007)	Bi - monthly

C2.2 WATER QUALITY ASSESSMENT

C2.2.1 Methods

Standard methods were used for this assessment, as outlined in the following publications:

- Methods manual of 2002 (DWAF, 2002).
- Methods updated from the DWAF (2002) document, and previously housed on the Ninham Shand web - site (<u>http://projects.shands.co.za/Hydro/hydro/WQReserve/main.htm</u>) and based on a workshop held in Grahamstown in 2003.
- EcoClassification Manual, version 1 (Kleynhans *et al.*, 2005), which includes the Physico chemical driver Assessment Index (PAI) model, and instructions for the water quality assessment and completion of the PAI.
- TEACHA (Tool for Ecological Aquatic Chemical Habitat Assessment) programme version 1_32 and notes (prepared by S Jooste, DWAF: RQS) of April 2007.

- Palmer *et al.* (2004), which summarized available methods as at 2003/2004.
- Document by Palmer and colleagues on including Electrical Conductivity in Reserve assessments (DWAF, 2004b).

All methods (including the use of TEACHA as a data manipulation tool) are currently being compiled into a single document by Scherman Consulting (DWAF, *in press*.).

TEACHA is an instrument to support decision - making in the Reserve process, and is a data manipulation tool. The primary output is the recommended water quality component of the Ecological Reserve with corresponding ion data to use in the setting of resource quality objectives. The use of this software presupposes that information is available and reliable. It is not an expert system and requires the availability of expertise to check that the outcome is correct and scientifically valid. It also has strict data input requirements, e.g. all salt ions have to be input or the model will not run. TEACHA was used for this assessment where possible, with data extracted from DWAF's Water Management System (WMS). The alternative approach to using TEACHA for data manipulation is to use a standard statistical package, such as Excel or Statistica, to produce summary statistics (e.g. median, 5th percentile, 95th percentile). Results produced by either method is input into the PAI model as ratings of 0 - 5 per metric, i.e. pH, Dissolved Oxygen (DO), salts, turbidity, toxics and nutrients. The relationship between the ratings of 0 - 5 and ecological categories A - F are shown in Table C5 below. The rank and weighting input to the PAI model is provided by the ecologist, as this assessment is linked to the type of river being assessed and the reaction of the biota in this system.

Table C5	Relationship between	categories and	ratings (Kleynhan	s et al., 2005)
----------	----------------------	----------------	-------------------	-----------------

Rating	Deviation from reference conditions	A - F Categories
0	No change.	A
1	Small change.	В
2	Moderate change.	С
3	Large change.	D
4	Serious change.	E
5	Extreme change.	F

The following variables were used for the assessment of water quality, according to the required methods:

Inorganic salts

- Sodium chloride (NaCl)
- Sodium sulphate (Na₂SO₄)
- Magnesium chloride (MgCl₂)
- Magnesium sulphate (MgSO₄)
- Calcium chloride (CaCl₂)
- Calcium sulphate (CaSO₄)
- Electrical Conductivity used as a surrogate for aggregated salts when all ionic data are not available and TEACHA could not be used.

Note that salt ionic data, i.e. Ca, Na, Mg, Cl, SO₄, is run through TEACHA to generate aggregated salts. TEACHA has strict data input requirements, e.g. all salt ionic data is needed to generate

aggregated salts. This data is normally sourced from the DWAF water quality monitoring points and available on DWAF's Water Management System (WMS).

Nutrients

- Total inorganic nitrogen or TIN (i.e. the N portion of all nitrogen sources, e.g. NO₂+NO₃+NH₄ - N)
- Phosphate (PO_4^{3-} P)

Systems variables

- pH
- Temperature: Although temperature is considered particularly important in the instances of thermal impacts, e.g. outlet of high temperature effluent from the TSB sugar mill between EWR 4 and 5 on the Crocodile River, it is also important to consider if the EWR site is located below a dam, or if changes in flow would result in extreme temperature changes in rivers.
- Dissolved oxygen.
- Turbidity.

As quantitative data (other than that measured in the field) were not available for DO, temperature and turbidity, a qualitative assessment was conducted for these variables (as outlined in the EcoStatus manual of Kleynhans *et al.* (2005). Data from previous Reserve studies (i.e. Claassen *et al.* (2002) for the Crocodile system, and Pegram and Palmer (1996) for the Sabie - Sand system) were also extensively used.

Toxic substances

• Those listed in the South African Water Quality Guidelines for Aquatic Ecosystems (DWAF, 1996), which includes toxic metal ions, toxic organic substances, and/or substances selected from the chemical inventory of an effluent/discharge. The rating tables in Kleynhans *et al.* (2005) provide values for selected toxics. Information on the geology of the area, as outlined in Claassen *et al.* (2002) was also used to provide the background template of naturally elevated metals.

C2.2.2 Data sources

A number of data sources were used for this assessment, as follows:

- Literature regarding water quality issues in the catchments, e.g. RHP (2001), DWAF (2004a), Claassen *et al.* (2002), Pegram and Palmer (1996) (Section C1 of this report).
- The perusal of 1: 50 000, and 1: 250 000 maps of the study area, depicting land use activities, point and diffuse sources of pollution, and catchment characteristics such as towns, tributaries, gauging weirs, etc.
- Maps of land cover classes.
- A field survey of the study area undertaken in November 2007/8. Water quality measurements were taken at specific points, including the EWR sites (Table C6). Samples were also taken for diatom analysis at Potchefstroom University (Appendix K; Table C8), phytoplankton analysis at the University of Johannesburg (Table C7), and periphyton samples for chlorophyll a analysis by Prof Froneman of Rhodes University (Table C7).

- A meeting with representatives of DWAF regional offices (Stanford Macavele, Kenneth Masindi, Vincent Leshabane), to access information about point and diffuse sources of pollution and available water quality data.
- Regional water quality data from the DWAF office in Nelspruit (contact: Stanford Macavele).
- Information from additional sources, e.g. personal communication with Jonathan Swart of the Sabi Sand Wildtuin, and Andrew Deacon of the KNP.
- Liaison with the national DWAF office and obtaining available water quality information from the DWAF WMS (Water Management System) database.
- Water quality on CD (version 1.0); produced by the CSIR in 1999.
- Water quality information on the Sabie Sand system from Water Research Commission (WRC) reports produced by Weeks *et al.* (1995).
- Information on the geology of the area to provide the background template of naturally elevated metals (Claassen *et al.*, 2002).
- Data produced by post graduate students of the University of Johannesburg (contact: Prof Victor Wepener).

Site	NO₃ (mg/l - N)	NO₂ (mg/l - N)	NH₄ (mg/l - N)	PO4 (mg/l - P)	рН	Temp °C	DO (mg/l)	DO (% sat)	Conductivity (µS/cm)	
	Crocodile River system									
EWR 1	0.593	<0.01	0.037	<0.02	7.46	20.4	6.94	95.6	1741	
EWR 2	0.633	<0.01	0.043	<0.02	7.47	25.2	6.35	92.1	157	
EWR 3	1.430	<0.01	0.047	<0.02	7.32	22.4	5.62	71.5	94	
WQ 1	0.617	<0.01	0.037	<0.02	7.66	22.1	7.72	96.2	171	
EWR 4	1.437	0.03	0.083	0.203	7.55	25.3	7.4	94.6	187	
EWR 6	1.267	0.01	0.060	0.037	7.64	28.5	7.64	95.3	395	
EWR 7	0.697	<0.01	0.040	0.020	8.02	24.7	7.69	96.4	385	
			Sabie	e - Sand Rive	er system					
EWR 1s	1.060	0.02	0.073	0.020	7.34	23	7.33	92.3	84	
EWR 4s	0.583	<0.01	0.037	0.030	7.61	24.1	7.5	95.1	80	
EWR 5s	1.487	<0.01	0.063	0.020	6.64	25.3	8.03	103.5	1414	
EWR 6s	1.743	0.04	0.150	<0.02	7.28	27.1	6.59	98.7	187	
EWR 7s	0.490	<0.01	0.077	0.060	7.22	27.5	6.82	92.6	89	

Table C6 On - site water quality data collected during the 2007 field survey

Table C7Chlorophyll - a analysis for samples collected from the Inkomati study area
(Froneman, 2007: periphyton; University of Johannesburg: phytoplankton
analysis)

Site	Phytoplankton biomass (μg chl - a per litre)	Periphyton biomass (mg chl - a m ^{- 2})
	Crocodile River system	
EWR 1, Krokodilspruit	2.76	20.52 (SD: 13.67)
EWR 2, Goedehoop	3.44	47.63 (SD: 13.43)
EWR 3, Poplar Creek	8.87	29.81 (SD: 9.36)
WQ 1 at Rivulets	4.00	25.28 (SD: 9.03)
EWR 6	3.32	
EWR 7, Kaap River	8.66	31.42 (SD: 16.74)
	Sabie – Sand River system	
EWR 1	4.89	
EWR 2, Aan de Vliet		32.97 (SD: 18.28)

Comprehensive Reserve Determination study for the Inkomati River System (WMA5)

Site	Phytoplankton biomass (μg chl - a per litre)	Periphyton biomass (mg chl - a m ^{- 2})
EWR 4, Mac Mac River	1.36	68.51 (SD: 27.36)
EWR 5, Marite River	1.57	57.85 (SD: 19.32)
EWR 6, Mutlumuvi River	0.35	
EWR 7, Tlulandziteka River	1.59	54.05 (SD: 25.03)

Table C8 Diatom assessment for the Inkomati study area (from Appendix D)

EWR site	Site name	River	No of species	Specific Pollution sensitivity Index (SPI)	Class	Category
EWR 1	Valyspruit	Crocodile	35	16.5	Good quality	В
EWR 2	Goedehoop	Crocodile	37	15.3	Good quality	В
EWR 3	Poplar Creek	Crocodile	28	14.6	Good quality	В
EWR 4	KaNyamazane	Crocodile	46	9.7	Moderate quality	С
EWR 5	Malelane	Crocodile	26	13.2	Moderate quality	B/C
EWR 6	Nkongoma	Crocodile	36	13.1	Moderate quality	B/C
EWR 7	Honeybird	Каар	33	15.8	Good quality	В
EWR 1	Upper Sabie	Sabie	51	13.1	Moderate quality	B/C
EWR 2	Aan de Vliet	Sabie	31	15.3	Good quality	В
EWR 3	Kidney	Sabie	24	14.5	Good quality	В
EWR 4	MacMac	MacMac	46	14.0	Good quality	В
EWR 5	Marite	Marite	18	19.4	High quality	А
EWR 6	Mutlumuvi	Mutlumuvi	31	15.6	Good quality	В
EWR 7	Tlulandziteka	Tlulandziteka (Sand)	37	12.8	Moderate quality	B/C
EWR 8	Sand	Sand	51	13.1	Moderate quality	B/C

C3 EWR 1: VALEYSPRUIT (CROCODILE RIVER)

C3.1 DATA AVAILABILITY

Data availability	Conf
No DWAF monitoring data was available, and information was extrapolated from EWR 2. Limited phytoplankton, periphytop and diatom data available (no of data sets (n) = 1)	2
A very poor data set exists for this site, so expert judgement and knowledge of the area was relied on.	2

C3.2 REFERENCE CONDITIONS

Reference conditions	Conf
Benchmark tables from Kleynhans et al. (2005).	1

Wat	er Quality Constituents	Value: RC			
Inorganic salts (mg/L)	No data available.				
Nutrients	Soluble Reactive Phosphate (SRP)	< 0.005			
(mg/L)	Total Inorganic Nitrogen (TIN)	< 0.25			
	pH (5 th +95 th percentiles)	6.5 + 8.0			
	Electrical conductivity (mS/m)	≤ 30 mS/m			
Physical variables	Turbidity (NTU)	Pristine river, no known man-made modifications of the catchment, and no known concerns about turbidity. Changes in turbidity appear to be natural and related to natural catchment processes such as rainfall runoff.			

C3.3 PRESENT ECOLOGICAL STATE

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C9 and C10.

Table C9Water quality table for EWR 1

RIVER	Crocodile	e River	Water Quality Mo	onitoring Points		
WQSU	1		RC	Extranalate from EW/D 2, as no date		
EWR SITE	1		PES	Extrapolate from EWR 2, as no data		
Confidence	assessment	Confidence in the ass or metal data. Also n	sessment is low , as o TIN or salts data.	little useful data and no DO, temp., turbidity		
Water Quality Constituents Value Category (Rating) / Comment						
Inergenie	MgSO ₄		-			
	Na ₂ SO ₄		-			
inorganic	MgCl ₂		-	No data for accomment		
(mg/L)	CaCl ₂		-			
	NaCl		-			
	CaSO ₄		-			
Nutrients	SRP		0.09	B (1)		
(mg/L)	TIN		-			
	pH (5 th -95 th per	centiles)	-			
	Temperature		-	Site not downstream of a dam, so		
Physical variables	Dissolved oxyg	en	-	temperature and oxygen fluctuations not expected. Some sensitivity to changing flows expected.		
	Turbidity (NTU)		95 th percentile: 19.4			
	Electrical condu	ictivity (mS/m)	-			
	Chl-a: periphyto	on	20.52	C (2) (n = 1)		
Response	Chl-a: phytopla	nkton	2.76	A (0) (n = 1)		
variable	Biotic community composition: macroinvertebrate (ASPT) score		6.3			

Diatoms	SPI = 16.5	B (1) (n = 1)
OVERALL SITE CLASSIFICATION (from PAI)	A (93.09)	

The present state of the water quality at EWR 1 is scored as an **A category** (see Table C10). Due to the data available, the assessment is of **low** confidence.

Table C10EWR 1: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	5	50	0.50	4.00
SALTS	4	70	0.00	4.00
NUTRIENTS	4	70	0.50	3.00
TEMPERATURE	2	90	0.50	3.00
TURBIDITY	3	80	0.50	4.00
OXYGEN	2	90	0.50	4.00
TOXICS	1	100	0.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	93.09			
PHYSICO-CHEMICAL CATEGORY	A			
BOUNDARY CATEGORY				

Notes

- Nutrients: Farming and urban activities in area, resulting in slight nutrient elevations as shown by periphyton, phytoplankton and diatoms (n = 1 for all indicators).
- Flows: Abstractions result in slight fluctuations in oxygen and temperature.

C3.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A	Elevated nutrients. Lower flows result in fluctuations in oxygen and temperature.	Farming activities. Dullstroom town.	NF	2

C3.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
А	Stable	А		N/A	2

C3.5 ALTERNATIVE ECOLOGICAL CATEGORY (AEC): B/C

PES	AEC	Comments	Conf
А	В	Overall nutrient levels and toxics would increase.	2
C4 EWR 2: GOEDEHOOP (CROCODILE RIVER)

C4.1 DATA AVAILABILITY

Data availability	Conf
Little DWAF monitoring data (PES; n = 9).	
Limited phytoplankton, periphyton and diatoms $(n = 1)$.	2
Very poor data set for this site, so expert judgement and knowledge of the area used extensively.	

C4.2 REFERENCE CONDITIONS

Reference conditions	Conf
Benchmark tables were used according to Kleynhans et al., 2005.	1

C4.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C11 and C12.

Table C11Water quality table for EWR 2

RIVER Crocodile River			River	Water Quality Monitoring Points	
WQSU		2		RC	Benchmark tables
EWR SITE 2			PES	X2H074Q01, '92-'94, n=9	
Confidence a	ssessm	ent	Confidence in the asses data. Also no TIN or salt	sment is low , as little is data.	useful data and no DO, temp., turbidity or metal
Water Quality	Consti	tuents		Value	Category (Rating) / Comment
	MgSC	D ₄		-	
	Na ₂ S0	D ₄		-	
Inorganic	MgCl ₂	2		-	No data far assessment
(mg/L)	CaCl ₂			-	No data for assessment
	NaCl			-	
	CaSC) ₄		-	
Nutrients	SRP			0.09	B (1)
(mg/L)	TIN			-	
	pH (5 th -95 th percentiles)			-	
	Temp	erature		-	Site not downstream of a dam, so temperature
Physical variables	Dissolved oxygen			-	and oxygen fluctuations not expected.
variables	Turbio	dity (NTU)		95 th percentile: 19.4	
	Electr	ical conduct	tivity (mS/m)	-	
	Chl-a:	periphyton		20.52	C (2) (n=1)
Response	Chl-a:	phytoplank	ton	3.44	A (0) (n=1)
variable	Biotic macro	community pinvertebrate	composition: e (ASPT) score	5.9	
	Diatoms			SPI=15.3	B (1) (n=1)
OVERALL SITE CLASSIFICATION (from PAI)			N (from PAI)	B (87.37)	

The present state of the water quality at EWR 2 is scored as a **B category** (see Table C12). Due to the data available, the assessment is of **low** confidence.

Table C12EWR 2: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	5	50	0.50	4.00
SALTS	4	70	0.50	4.00
NUTRIENTS	4	70	1.00	3.00
TEMPERATURE	1	100	0.50	3.00
TURBIDITY	3	80	1.00	4.00
OXYGEN	1	100	0.50	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	87.37			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: Farming and urban activities in area, resulting in slight nutrient elevations as shown by periphyton, phytoplankton and diatoms (n = 1 for all indicators).
- Diatoms indicate some salination, possibly irrigation return flows.
- Flows: Abstractions result in slight fluctuations in oxygen and temperature.

C4.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Elevated nutrients.	Farming activities.		
В	Lower flows result in fluctuations in oxygen and temperature. Turbidity from farming activities. Slight elevation in toxics is expected.	Land use activities - site is below Dullstroom town.	NF	2

C4.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
Upper B	Slow, but downward	Lower B	5 yrs	The presence of highly pollution tolerant diatom species (<i>S. seminulum</i> , <i>N. palea</i> , <i>N. tenelloides</i> , <i>N. gregaria</i> , <i>N. capitatoradiata</i>), although in small numbers, indicate that the pollution levels are higher than at EWR 1 and this could indicate a negative trend.	2

C4.5 AEC: C

PES	AEC	Comments	Conf
А	В	A drop in flows will result in an increase in nutrient levels, salinity and toxics. More frequent and lower low flows will also affect oxygen and temperature levels.	2

C5 EWR 3: POPLAR CREEK (CROCODILE RIVER)

C5.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES. Limited phytoplankton, periphyton and diatoms ($n = 1$).	
No temperature, DO or turbidity data.	3
Little metal data. EC and aggregated salts (as TEACHA used).	

C5.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H006Q01; n = 149, 1976 – 1979.	3

Wat	er Quality Constituents	Value: RC
	MgSO ₄	5.314
	Na ₂ SO ₄	1.191
Inorganic salts	MgCl ₂	1.104
(mg/L)	CaCl ₂	2.315
	NaCl	6.238
	CaSO ₄	0.460
Nutrients	Soluble Reactive Phosphate (SRP)	0.007
(mg/L)	Total Inorganic Nitrogen (TIN)	0.090
Physical	pH (5 th +95 th percentiles)	6.5 + 7.7
variables	Electrical conductivity (mS/m)	17.00

C5.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C13 and C14

Table C13 Water quality table for EWR 3

RIVER Crocodile River			e River	Water Quality M	onitoring Points
WQSU	3		RC	X2H013Q01, '77-'80, n=170	
EWR SITE		3		PES	X2H013Q01, '04-'07, n=79
Confidence	assess	ment	Confidence in the ass	essment is moder a	ate, as little DO, temp., turbidity or metal data.
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment
	MgSC	D4		8	
	Na ₂ S	O4		0	
Inorganic	MgCl	2		3	A (0) (TEACHA output)
(mg/L)	CaCl	2		3	
	NaCl			9	
	CaSC) 4		0	
Nutrients (mg/L)	SRP			0.018	
	TIN			0.125	
Physical	hysical pH (5 th -95 th percentiles)			7.3-8.04	B (1) (TEACHA output)

variables	Temperature	-	Site downstream of Kwena Dam so high
	Dissolved oxygen	-	and bottom level release, flows are normally high.
	Turbidity (NTU)	-	
	Electrical conductivity (mS/m)	15.82	A (0)
	Chl-a: periphyton	29.81	D (3) (n=1)
Response	Chl-a: phytoplankton	8.87	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.8	
	Diatoms	SPI=14.6	B (1) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)	C (74.73)	

The present state of the water quality at EWR 3 is scored as a **C category** (see Table C14). Due to the data available, the assessment is of **moderate** confidence.

Table C14EWR 3: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	0.50	4.00
SALTS	3	60	0.00	4.00
NUTRIENTS	3	60	1.00	3.00
TEMPERATURE	1	100	1.50	4.00
TURBIDITY	2	80	2.00	3.00
OXYGEN	1	100	2.00	4.00
TOXICS	1	100	1.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	74.73			
PHYSICO-CHEMICAL CATEGORY	С			
BOUNDARY CATEGORY				

Notes

- Nutrients: Phytoplankton, periphyton and diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Some turbidity expected due to catchment activities and land use.
- Toxics: Most metal data indicates good quality (except for Zn), but pesticide use practiced in area.
- Temperature and oxygen: Site downstream of Kwena Dam, with resulting changes in oxygen and temperatures, particularly at low flows.

C5.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Slightly elevated nutrients.	Agricultural activities.		
С	Temperature changes (releases and very low flows in wet season). Elevated turbidity levels. Slight elevation in toxics expected.	Operation of Kwena Dam.	NF	3

C5.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
Upper C	Negative	(Possibly move to a Lower C)	5 yrs	The present state is dependent on the operation of the dam, e.g. temperature and oxygen state is dependent on flow releases. So, although the water quality will move within the category, it may be better or worse depending on how and when water is released from Kwena Dam.	3

C5.5 RECOMMENDED ECOLOGICAL CATEGORY (REC): B

PES	REC	Comments	
С	B/C	Maintain the current EC. There will however be a slight improvement in oxygen and temperature.	3

C5.6 AEC: C/D

PES	AEC	Comments		
С	C/D	Lower flows in both the dry and wet seasons, with associated temperature and oxygen changes. Lower flows therefore less dilution of toxics in the system.	3	

C6 EWR 4: KANYAMAZANE (CROCODILE RIVER)

C6.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited phytoplankton, periphyton + diatoms ($n = 1$).	
No temperature, DO or turbidity data.	3
Little metal data.	
EC and aggregated salts (as TEACHA used).	

C6.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X2H032Q01; n = 882, 1977 – 1980.	3

Wat	er Quality Constituents	Value: RC	
	MgSO ₄	11.450	
	Na ₂ SO ₄	2.160	
Inorganic salts	MgCl ₂	1.057	
(mg/L)	CaCl ₂	1.283	
	NaCl	11.070	
	CaSO ₄	0.501	
Nutrients	Soluble Reactive Phosphate (SRP)	0.014	
(mg/L)	Total Inorganic Nitrogen (TIN)	0.270	
Physical	pH (5 th +95 th percentiles)	6.33 + 7.22	
variables	Electrical conductivity (mS/m)	18.53	

C6.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C15 and C16.

Table C15Water quality table for EWR 4

RIVER		Crocodile	e River	Water Quality Monitoring Points		
WQSU 4		RC	X2H032Q01, '77-'80, n=88			
EWR SITE		4		PES	X2H032Q01, '04-'07, n=108	
Confidence	assess	ment	Confidence in the ass	essment is moder a	ate, as little DO, temp., turbidity or metal data.	
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment	
	MgSO ₄		36			
	Na ₂ SO ₄		5			
Inorganic	MgCl ₂		5	E (4) (TEACHA output). Rating modified		
(mg/L)	CaCl ₂			16	TEACHA. See EC value.	
	NaCl			68		
	CaSO ₄		0			
Nutrients	SRP	SRP		0.072		
(mg/L)	TIN	TIN		0.881		

	pH (5 th -95 th percentiles)	7-7.9	A (0) as natural category was re- benchmarked
Dhysical	Temperature	-	Stream fast-flowing, but periods of low
variables	Dissolved oxygen	-	flows will exacerbate temperature + oxygen fluctuations.
	Turbidity (NTU)	-	
	Electrical conductivity (mS/m)	43.3	B (1)
Response variable	Chl-a: periphyton	-	
	Chl-a: phytoplankton	3.35	A (0) (n=1)
	Biotic community composition: macroinvertebrate (ASPT) score	5.4 (RHP: 5.9)	
	Diatoms	SPI=9.7	C (0) (n=3)
OVERALL SITE CLASSIFICATION (from PAI)		C (76.73)	

The present state of the water quality at EWR 4 is scored as a **C category** (see Table C16). Due to the data available, the assessment is of **moderate** confidence.

Table C16EWR 4: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	1.00	3.00
SALTS	3	60	2.00	3.00
NUTRIENTS	2	80	2.00	4.00
TEMPERATURE	1	100	0.00	4.00
TURBIDITY	3	60	1.00	4.00
OXYGEN	1	100	0.50	4.00
TOXICS	1	100	2.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	76.73			
PHYSICO-CHEMICAL CATEGORY	С			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate pollution.
- Turbidity: Some turbidity expected due to catchment activities.
- Toxics: catchment activities (including extensive urban and per-urban areas and agricultural activities, e.g. pesticide use), including input of the Elands River.

C6.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Elevated nutrients and toxics. Temperature, turbidity and oxygen fluctuations	Extensive cultivation, urban / peri-urban areas. Poor land management – return flows.	NF	3

C6.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		Although water quality conditions are poor, it is stable due to the constant high flow, particularly high base flows.	3

C6.5 REC: B

PES	REC	Comments	Conf
С	В	Nutrient levels and toxics would decrease due to flow improvement.	3

C6.6 AEC: C/D

PES	AEC	Comments	Conf
С	С	Increased sedimentation, with a resulting change within the C EC.	N/A

C7 EWR 5: MALALANE (CROCODILE RIVER)

C7.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited diatom data (n = 1).	
No temperature, DO or turbidity data.	3
Little metal data.	
Aggregated salts available as TEACHA used.	

C7.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X2H017Q01; n = 125, 1977 – 1980.	3.5

Wat	er Quality Constituents	Value: RC
	MgSO ₄	16.63
	Na ₂ SO ₄	11.07
Inorganic salts	MgCl ₂	0
(mg/L)	CaCl ₂	0
	NaCl	32.72
	CaSO ₄	0.55
Nutrients	Soluble Reactive Phosphate (SRP)	0.014
(mg/L)	Total Inorganic Nitrogen (TIN)	0.37
Physical	pH (5 th +95 th percentiles)	6.7+ 7.9
variables	Electrical conductivity (mS/m)	58.86

C7.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C17 and C18.

Table C17Water quality table for EWR 5

RIVER		Crocodile River		Water Quality Mor	nitoring Points
WQSU		6		RC	X2H017Q01, '77-'80, n=125
EWR SITE		5		PES	X2H017Q01, '04-'07, n=114
Confidence	assess	ment	Confidence in the ass	essment is moderate	e, as little DO, temp., turbidity or metal data.
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment
	MgSO ₄			52 (F category)	
	Na ₂ SO ₄			5	
Inorganic	MgCl ₂			6	E (4) (TEACHA output), but modified
(mg/L)	CaCl ₂			12	despite presence of indicator diatoms
	NaCl			1	
	CaSO ₄			0	
Nutrients	SRP			0.041	B (1)
(mg/L)	TIN			0.684	B (1)
Physical	pH (5 th -95 th percentiles)		7.51-8.4	B (1)	

variables	Temperature	-	Although not downstream of a dam,
	Dissolved oxygen	-	and oxygen fluctuations at low flows. There are many abstractions in this WQSU
	Turbidity (NTU)	-	
	Electrical conductivity (mS/m)	57.75	A (0), as benchmark table re-calibrated
	Chl-a: periphyton	-	
Response	Chl-a: phytoplankton	-	
variable	Biotic community composition: macroinvertebrate (ASPT) score	5.1	
	Diatoms	SPI=13.2	B/C (1.5) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)	C (67.21)	

The present state of the water quality at EWR 5 is scored as a **C category** (see Table C18). Due to the data available, the assessment is of **moderate** confidence.

Table C18EWR 5: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	1.00	5.00
SALTS	3	70	2.00	3.00
NUTRIENTS	2	85	2.00	4.00
TEMPERATURE	1	100	2.00	3.00
TURBIDITY	4	50	2.00	4.00
OXYGEN	1	100	1.00	3.00
TOXICS	1	100	1.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	67.21			
PHYSICO-CHEMICAL CATEGORY	С			
BOUNDARY CATEGORY				

Notes

- Nutrients: Chl-a samples and diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Elevated turbidity expected due to catchment activities; including suspended solid loads from TSB sugar mill effluents.
- Toxics: Many impacting activities in the area, e.g. sugar cane plantations and processing, citrus plantations and processing, urban areas, agricultural activities.
- Temperature and oxygen: Alluvial system, with high temperature effluents from TSB sugar mill resulting in localized fish kills.
- Elevated salts.

C7.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	All variables are elevated including oxygen and temperature. Alkaline conditions.	Agricultural and urban activities, including extensive sugar cane and citrus plantations and land management on right bank, causing abnormal low flows. Return flows from sugar mill. Abstraction.	F	3

C7.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	5 yrs	Poor water quality state exacerbated by extensive abstractions in this stretch of river.	3

C7.5 REC: B

PES	REC	Comments	Conf
С	В	Increased flows, particularly low flows, will improve the water quality state by dilution. It is assumed that enough water will be provided at the right time to reduce the toxics by a category.	3

C7.6 AEC: D

PES	AEC	Comments	Conf
С	D	Lower flows will result in a poorer water quality state, with elevations in nutrients, salts and toxics. Increases in temperatures and drops in oxygen level will also be seen.	4

C8 EWR 6: NKONGOMA (CROCODILE RIVER)

C8.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES. Limited phytoplankton and diatoms (n = 1).	3
Little metal data. Aggregated salts as TEACHA.	

C8.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X2H016Q01; n = 163, 1977 – 1980.	3

Wat	er Quality Constituents	Value: RC
	MgSO ₄	17
	Na ₂ SO ₄	10.54
Inorganic salts	MgCl ₂	4.48
(mg/L)	CaCl ₂	8.26
	NaCl	50.4
	CaSO ₄	0.63
Nutrients	Soluble Reactive Phosphate (SRP)	0.007
(mg/L)	Total Inorganic Nitrogen (TIN)	0.33
Physical	pH (5 th +95 th percentiles)	6.71 + 8.02
variables	Electrical conductivity (mS/m)	69.36

C8.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C19 and C20.

Table C19Water quality table for EWR 6

RIVER		Crocodile	e River	Water Quality Mo	onitoring Points
WQSU		6		RC	X2H016Q01, '77-'80, n=163
EWR SITE		6		PES	X2H016Q01, '04-'07, n=119
Confidence	assess	Assessment Confidence in the assortate.		essment is moderate, as little DO, temp., turbidity or metal	
Water Qualit	ty Constituents		Value	Category (Rating) / Comment	
	MgSO ₄			50 (rating=5)	
	Na ₂ SO ₄			8	
Inorganic	MgCl	2		17 (rating=1)	E (4) (TEACHA output), but modified
(mg/L)	CaCl ₂	CaCl ₂ NaCl		33 (rating=1)	despite presence of indicator diatoms
,	NaCl			2.1	
	CaSO ₄			0	
Nutrients	SRP			0.031	B (1)
(mg/L)	TIN	TIN		0.341	B (1)

	pH (5 th -95 th percentiles)	7.78-8.5	B (1)
	Temperature	-	Although not downstream of a dam,
Physical	Dissolved oxygen	-	and oxygen fluctuations at low flows.
variables	Turbidity (NTU)	-	
	Electrical conductivity (mS/m)	86.08	B (1). System naturally saline and benchmark category re-calibrated
	Chl-a: periphyton	-	
Response	Chl-a: phytoplankton	3.32	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	5.9	
	Diatoms	SPI=13.1	B/C (1.5) (n=1)
OVERALL S	TE CLASSIFICATION (from PAI)	C (67.48)	

The present state of the water quality at EWR 6 is scored as a **C category** (see Table C20). Due to the data available, the assessment is of **moderate** confidence.

Table C20EWR 6: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	1.00	5.00
SALTS	3	70	2.00	3.00
NUTRIENTS	2	85	2.50	4.00
TEMPERATURE	1	100	1.50	3.00
TURBIDITY	4	50	1.00	4.00
OXYGEN	1	100	1.00	3.00
TOXICS	1	100	2.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	67.48			
PHYSICO-CHEMICAL CATEGORY	С			
BOUNDARY CATEGORY				

Notes

- Nutrients: Nutrient levels are elevated. Filamentous algal sheets are evident at low flows.
- Turbidity: Some turbidity expected due to catchment activities. Suspended solids are present in the sugar mill effluent.
- Toxics: Toxicant use expected due to sugarcane and citrus plantations. Elevated Cd levels. Downstream of impacts from sugar mill + citrus processing.
- Temperature and oxygen: Temperature levels increase and oxygen levels drop at low flows.

C8.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Elevated nutrients, salinity, toxics and temperatures.	Agricultural activities. Downstream of sugar mill and citrus processing.	NF	2
	Reduced oxygen levels.	Low flows exacerbate temperature and oxygen levels.		5

C8.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	5 yrs	Poor water quality state is exacerbated by low flows.	3

C8.5 REC: B

PES	REC	Comments	Conf
С	В	Improved operation of low flows will result in an improvement of the water quality state due to increased dilution.	3

C8.6 AEC: D

PES	AEC	Comments	Conf
С	D	Decreased low flows and periods of zero flows in some stretches of the river will result in associated water quality changes, e.g. increases in nutrient levels, toxics, salinity levels and temperature. Oxygen levels will drop under these conditions.	4

C9 EWR 7: (KAAP RIVER) – HONEYBIRD

C9.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited phytoplankton, periphyton + diatoms ($n = 1$).	
No temperature, DO or turbidity data.	3
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C9.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X2H022Q01, 1977 - 1981, n = 96.	3

Wat	er Quality Constituents	Value: RC	
Inorganic salts (mg/L) No available data.			
Nutrients	Soluble Reactive Phosphate (SRP)	0.027	
(mg/L)	Total Inorganic Nitrogen (TIN)	0.44	
Physical	pH (5 th +95 th percentiles)	6.96 + 8.18	
variables	Electrical conductivity (mS/m)	70.15	

C9.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C21 and C22.

Table C21Water quality table for EWR 7

RIVER	RIVER Kaap River			Water Quality Monitoring Points			
WQSU	7			RC	X2H022Q01, '77-'81, n=96		
EWR SITE		7		PES	X2H022Q01, '04-'07, n=174		
Confidence assessment Confidence in the data.			Confidence in the data.	assessment is m	noderate, as little DO, temp., turbidity or metal		
Water Qualit	ty Const	ituents		Value	Category (Rating) / Comment		
	MgSO	4		-	TEACHA could not be used and EC used		
Inorganic	Na ₂ SO ₄			-	as surrogate.		
	MgCl ₂			-			
salts (mg/L)	CaCl ₂			-			
(9/=/	NaCl			-			
	CaSO ₄			-			
Nutrients	SRP			0.032	B (1). System is naturally eutrophic.		
(mg/L)	TIN			0.72	B (1). System is naturally eutrophic.		
	pH (5 th -95 th percentiles)			7.96 + 8.53	B (1): natural category was re- benchmarked		
Physical	Tempe	erature		-	River fast-flowing, although low flows will		
variables	Dissol	Dissolved oxygen			result in temperature + oxygen fluctuations		
	Turbid	ity (NTU)		-			

Variable	macroinvertebrate (ASPT) score Diatoms	(RHP: 7.3) SPI=15.8	B (1) (n=1)
variable	Biotic community composition:	6	
Pasponsa	Chl-a: phytoplankton	8.66	A (0) (n=1)
	Chl-a: periphyton	31.42	E (4) (n=1)
	Electrical conductivity (mS/m)	90.8	A (0). System seems naturally saline (RC – EC=70.15)

The present state of the water quality at EWR 1 is scored as a **B category** (see Table C22). Due to the data available, the assessment is of **moderate** confidence.

Table C22EWR 7: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	3	50	1.00	5.00
SALTS	3	50	1.00	3.00
NUTRIENTS	2	80	1.50	3.00
TEMPERATURE	1	100	0.50	3.00
TURBIDITY	2	80	0.50	4.00
OXYGEN	1	100	0.00	3.00
TOXICS	1	100	1.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	85.36			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Some turbidity expected due to catchment activities.
- Toxics: Extensive upstream mining activities (primarily along the Noord and Suid-Kaap and around Barbeton; and irrigation return flows from irrigation in the middle of the catchments. Although elevated arsenic has been reported in the area, no arsenic was seen in recent (2006 2007) DWAF regional office monitoring data; although peaks of elevated Fe were evident in the 1990s).
- Temperature and oxygen: Bedrock-dominated system so temperature fluctuations expected.

C9.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Elevated nutrients and salts. Slightly alkaline waters. Slightly elevated turbidity and toxics.	Mining activities in the upper catchment. Agricultural and other activities (e.g. pole treating) in the catchment immediately above the site.	NF	3

C9.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		Water quality conditions stable, although there is evidence of pollutant tolerant diatom species at low levels.	2

C9.5 REC: B

PES	REC	Comments	Conf
В	В	Improved flows would only improve turbidity levels. Other water quality issues would have to be improved at the source.	N/A

C9.6 AEC: D

PES	AEC	Comments				
В	С	Mining effluents will probably be caught in the dam. Flushing below the dam will be reduced, resulting in some elevation of nutrient levels due to agricultural activities upstream of the site and below the dam. Note that turbidity levels will drop, having a negative effect on a river that seems naturally slightly turbid due to possible build-up of periphyton.	3			

C10 EWR 1: UPPER SABIE (SABIE RIVER)

C10.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES. Limited phytoplankton, periphyton + diatoms ($n = 1$).	
No temperature, DO or turbidity data. Little metal data.	3
EC used instead of aggregated salts (as TEACHA could not be used).	

C10.2 REFERENCE CONDITIONS

 Reference conditions
 Conf

 DWAF monitoring data was available. Water quality station X3H001Q01 was used to set reference conditions with n = 82, and data available from 1977 – 1979.
 3

Wat	er Quality Constituents	Value: RC			
Inorganic salts (mg/L)	Alts No data available.				
Nutrients	Soluble Reactive Phosphate (SRP)	0.018			
(mg/L)	Total Inorganic Nitrogen (TIN)	0.20			
Physical	pH (5 th +95 th percentiles)	6.46+7.30			
variables	Electrical conductivity (mS/m)	12.21			

C10.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C23 and C24.

Table C23Water quality table for EWR 1

RIVER	RIVER Sabie River Water Quality Monitoring Points				ity Monitoring Points
WQSU	U 2 RC X3H001Q01, '77-'79, n=82			X3H001Q01, '77-'79, n=82	
EWR SITE		1		PES	X3H001Q01, '91-'99, n=42
Confidence assessment Confidence in the assistant			Confidence in the data.	e assessment is m	oderate, as little DO, temp., turbidity or metal
Water Qualit	ty Cons	stituents		Value	Category (Rating) / Comment
	MgS0	D 4		-	TEACHA could not be used and EC used
	Na ₂ S	Na ₂ SO ₄			as surrogate.
Inorganic	MgCl ₂			-	
salts (mg/L)	CaCl ₂			-	
(9, =)	NaCl			-	
	CaSO ₄			-	
Nutrients	SRP			0.02	A (0) as natural category was re-
(mg/L)				0.45	B (1)
				0.45	
	рН (5	-95" per	centile)	7.37-7.87	A (0)
	Temp	perature		-	Not considered a problem as there are no
Physical variables	Disso	Dissolved oxygen			thermal impacts and not downstream of a
variables	Turbi	dity (NTU)		-	activities.
	Elect	Electrical conductivity (mS/m)			A (0)

	Chl-a: periphyton	-	
Response	Chl-a: phytoplankton	4.89	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.3 7.54	this study RHP surveys
	Diatoms	SPI=13.1	B/C (1.5) (n=1)
OVERALL S	TE CLASSIFICATION (from PAI)		A/B (92.43)

The present state of the water quality at EWR 1 is scored as an **A/B category** (see Table C24). Due to the data available, the assessment is of **moderate** confidence.

Table C24 EWR 1: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	5	50	0.00	4.00
SALTS	5	50	0.00	4.00
NUTRIENTS	3	80	1.50	3.00
TEMPERATURE	2	95	0.00	3.00
TURBIDITY	3	80	0.50	3.00
OXYGEN	1	100	0.00	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	92.43			
PHYSICO-CHEMICAL CATEGORY	Α			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Some turbidity expected due to catchment activities.
- Toxics: Return flows from old mines expected.

C10.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A/B	Elevated nutrients from urban activities in Sabie and surrounding areas.	Urban and per-urban fringe, with related impacts such as uncompliant releases from Sewage Treatment Works (STW).	NF	3
7,0	Elevated turbidity levels.	Forestry.		
	Return flows.	Old mines.		

C10.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Stable	A/B		N/A	2

C10.5 REC: B

PES	REC	Comments	Conf
A/B	A/B	No change.	N/A

C10.6 AEC: C/D

PES	AEC	Comments	Conf
A/B	B/C	This scenario will cause an overall deterioration in the current EC.	4

C11 EWR 2: AAN DE VLIET (SABIE RIVER)

C11.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited phytoplankton, periphyton + diatoms (n = 1).	
No DO data.	3
Limited temperature and turbidity data from Week <i>et al.</i> (1995).	_
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C11.2 REFERENCE CONDITIONS

Reference conditions		
DWAF monitoring data was available. Water quality station X3H006Q01 was used to set reference conditions	2	
with $n = 149$, and data available from 1976 – 1979.	3	

Wate	r Quality Constituents	Value: RC		
	MgSO ₄	9.37		
	Na ₂ SO ₄	1.19		
Inorganic salts	MgCl ₂	0.82		
(mg/L)	CaCl ₂	2.04		
	NaCl	6.72		
	CaSO ₄	0.45		
Nutrients	SRP	0.007		
(mg/L)	TIN	0.12		
Physical	pH (5 th +95 th percentiles)	6.46+7.54		
variables	Electrical conductivity (mS/m)	13.16		

C11.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C25 and C26.

Table C25Water quality table for EWR 2

RIVER Sat		Sabie Riv	Sabie River		Monitoring Points	
WQSU 3		3	3		X3H006Q01, '76-'79, n=149	
EWR SITE		2		PES	X3H006Q01, '04-'07, n=77	
Confidence assessment		ment	Confidence in the assessment is moderate , as no DO, temp. or turbidity data, and little metal data.			
Water Qualit	Water Quality Constituents			Value	Category (Rating) / Comment	
	MgSO ₄		11	A (0)		
	Na ₂ SO ₄		0	A (0)		
Inorganic	MgCl ₂		10	A (0)		
salts (mg/L)	CaCl ₂		9	A (0)		
(9/ =/	NaCl		56	B (1)		
	CaSO ₄		0	A (0)		
Nutrients SRP			0.02	C (3)		

(mg/L)	TIN	0.214	A (0)
	pH (5 th -95 th percentile)	7.23-7.99	B (1)
	Temperature	-	Not considered a problem as there are
	Dissolved oxygen	-	no thermal impacts and not downstream
Physical variables	Turbidity (NTU)	Mean: 4 NTU Maximum value: 25 NTU (Weeks et al., 1995)	so temperatures may increase + lower altitude.
	Electrical conductivity (mS/m)	15.7	A (0)
	Chl-a: periphyton	32.97	
Response	Chl-a: phytoplankton	-	
variable	Biotic community composition: macroinvertebrate (ASPT) score	7	
	Diatoms	SPI=15.3	B (1) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)		B (87.48)

The present state of the water quality at EWR 2 is scored as a **B category** (see Table C26). Due to the data available, the assessment is of **moderate** confidence.

Table C26EWR 2: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	5	50	0.00	4.00
SALTS	5	50	0.00	4.00
NUTRIENTS	3	80	1.50	3.00
TEMPERATURE	2	95	0.50	3.00
TURBIDITY	3	80	1.00	3.00
OXYGEN	1	100	0.50	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	87.48			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution.
- Temperature: Bedrock-dominated system so temperature increases expected at low flows.
- Toxics: Pesticide use anticipated as extensive farming in the area.
- Diatoms show deteriorating conditions (under low flow conditions) as there are pollution tolerant diatoms present in the population (see Appendix K for more detail).

C11.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Elevated nutrient levels and toxicants.	Forestry and Sabie town and small scale irrigation.	NF	3

C11.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Stable	A/B		N/A	2

C11.5 REC: B

PES	REC	Comments	Conf
В	A/B	An improvement in land use, will improve the nutrient status which will result in an overall improvement to an A/B EC.	3

C11.6 AEC: C/D

PES	AEC	Comments			
В	С	Increased pesticide use due to farming activities will lead to elevated nutrient levels and toxics. Due to reduced flows and increased sediment load, an increase in temperature and decrease in oxygen is expected.	4		

C12 EWR 3: KIDNEY (SABIE RIVER)

C12.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES, although data only until 1999 for present state.	
No phytoplankton and periphyton $+$ diatoms (n $=$ 1).	
No temperature, DO or turbidity data.	2.5
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C12.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF station X3H006Q01 was used; n = 149, 1976 – 1979.	3

Wate	r Quality Constituents	Value: RC		
	MgSO ₄	9.37		
	Na ₂ SO ₄	1.19		
Inorganic salts	MgCl ₂	0.82		
(mg/L)	CaCl ₂	2.04		
	NaCl	6.72		
	CaSO ₄	0.45		
Nutrients	SRP	0.007		
(mg/L)	TIN	0.12		
	pH (5 th +95 th percentiles)	6.46+7.54		
Physical variables	Turbidity (NTU)	-		
	Electrical conductivity (mS/m)	13.16		

C12.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C27 and C28.

Table C27 Water quality table for EWR 3

RIVER Sabie Riv		ver	Water Quality Monitoring Points			
WQSU 5			RC	X3H006Q01, '76-'79, n=149		
EWR SITE 3		3		PES	X3H013Q01, '91-'99, n=39 (Data record for X3H021Q01 not used as n=5)	
Confidence assessment			Confidence in the assessment is low-moderate , as little DO, temp., turbidity or metal data. No recent data record is available for this site.			
Water Quality Constituents				Value	Category (Rating) / Comment	
	MgSO ₄			-	TEACHA could not be used and EC	
	Na ₂ S	O4		-	used as surrogate.	
Inorganic	MgCl ₂			-		
salts (mg/L)	CaCl ₂		-			
(NaCl			-		
	CaSC	D ₄		-	1	

Nutrients	SRP	0.01	B (1)
(mg/L)	TIN	0.175	A (0)
	pH (5 th -95 th percentile)	7.11-8.44	B (1)
	Temperature	-	Not considered a problem as there are
	Dissolved oxygen	-	no thermal impacts and not downstream of a dam, although low flows exacerbate
Physical variables	Turbidity (NTU)	Mean: 12.5 NTU 95 th percentile: 53 NTU (WMS data)	temperature + oxygen changes. Turbidity peaks experienced – exacerbated by poor land management.
	Electrical conductivity (mS/m)	14.71	A (0)
	Chl-a: periphyton	-	
Response	Chl-a: phytoplankton	-	
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.3	
	Diatoms	SPI=14.5	B (1) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)		B (84.91)

The present state of the water quality at EWR 1 is scored as a **B category** (see Table C 28). Due to the data available, the assessment is of **low-moderate** confidence (largely due to present state data from X3H013Q01 only up until 1999).

Table C28EWR 3: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	40	0.00	4.00
SALTS	3	50	0.50	4.00
NUTRIENTS	2	80	1.50	3.00
TEMPERATURE	1	100	0.50	5.00
TURBIDITY	2	80	1.50	3.00
OXYGEN	1	100	0.50	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	84.91			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: All indicators (n = 1 for diatoms) indicate some enrichment and pollution upstream of the KNP.
- Turbidity: Elevated turbidities expected due to catchment activities.
- Toxics: Land-use is conservation, although extensive citrus cultivation + urban activities upstream.
- Temperature and oxygen: Low flows result in changes to temperature and oxygen.

C12.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Elevated nutrient levels, turbidity and temperatures. Drop in oxygen levels.	Poor land management outside the KNP. Urban and rural activities outside the KNP. Changes in flow.	NF	4

C12.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
High B	Negative	Low B	5 yrs	The presence of pollutant tolerant species e.g. <i>E. minima</i> , <i>N. frustulum</i> , <i>N. capitatoradiata</i> and <i>S. seminulum</i> indicate pollution problems and the Mkuhlu township upstream from this site may be the main source of these pollutants. This is supported by the presence of <i>A. minutissima var. saprophila</i> which indicates enrichment and favours eutrophic water. However, the overall water quality seems stable, depending on the periods of low flows not increasing in frequency.	3

C12.5 AEC: B/C

PES	AEC	Comments	Conf
В	С	Decreased flows will cause an increase in oxygen and temperature. Poor land management outside the KNP will lead to higher nutrient and turbidity levels.	4

C13 EWR 4: MAC MAC (MAC MAC RIVER)

C13.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited phytoplankton, periphyton + diatoms (n = 1).	
No temperature, DO or turbidity data.	3
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C13.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H003Q01; n = 48, 1977 – 1979.	2.5

Wat	er Quality Constituents	Value: RC
Inorganic salts (mg/L)	No data available.	
Nutrients	Soluble Reactive Phosphate (SRP)	0.011
(mg/L)	Total Inorganic Nitrogen (TIN)	0.25
Physical	pH (5 th +95 th percentiles)	6.5+7.5
variables	Electrical conductivity (mS/m)	14.5

C13.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C29 and C30.

Table C29Water quality table for EWR 4

RIVER	Mac Mac River		Water Quality Monitoring Points				
WQSU		1, Mac Mac River		RC	X3H003Q01, '77-'79, n=48		
EWR SITE		4		PES	X3H003Q01, '04-'07, n=56		
Confidence assessment Confidence in the as data.			Confidence in the as data.	ssessment is	moderate, as little DO, temp., turbidity or metal		
Water Quali	ty Cons	stituents		Value	Category (Rating) / Comment		
	MgSC	D 4		-	TEACHA could not be used and EC used as		
	Na ₂ SO ₄			-	surrogate.		
Inorganic	MgCl ₂			-			
salts (mg/L)	CaCl ₂			-			
(9, =)	NaCl			-			
	CaSO ₄			-			
Nutrients	SRP			0.013	B (1)		
(mg/L)	TIN			0.28	B (1)		
	pH (5 th -95 th percentile)			7.2-7.9	A (0)		
	Temperature			-	Not considered a problem as there are no		
Physical	Dissolved oxygen		-	thermal impacts and not downstream of a			
variables	Turbio	Turbidity (NTU)		-	boulder- and bedrock-dominated and altitude.		
	,			Some turbidity due to surrounding forestry- related activities.			

	Electrical conductivity (mS/m)	15.43	A (0)
	Chl-a: periphyton	57.85	D (3) (n=1)
Response	Chl-a: phytoplankton	1.36	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.4	
	Diatoms	SPI=14	B (1) (n=1)
OVERALL S	TE CLASSIFICATION (from PAI)		A/B (89.32)

The present state of the water quality at EWR 4 is scored as an **A / B category** (see Table C30). Due to the data available, the assessment is of **moderate** confidence.

Table C30EWR 4: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	60	0.00	4.00
SALTS	4	60	0.00	3.00
NUTRIENTS	2	90	1.50	3.00
TEMPERATURE	1	100	1.00	4.00
TURBIDITY	3	80	1.00	3.00
OXYGEN	1	100	0.00	5.00
TOXICS	1	100	0.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	89.32			
PHYSICO-CHEMICAL CATEGORY	A/B			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution, probably due to the output from Graskop Sewage Treatment Works (STW).
- Temperature: Boulder-bedrock system so elevated temperatures expected, although most of the channel is well-shaded.
- Toxics: Venus sawmill not expected to contribute much to toxicity. Physical impacts of wood-chips layering the streambed should be guarded against.

C13.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A/B	Elevated nutrients.	Wastewater input to the river, e.g. Graskop WWTW which disposes to the Mac Mac River.	NF	3

C13.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Negative	В	5 yrs	The diatom community shows traces of the onset of severe water quality impacts with the presence of <i>E. minima</i> , <i>N. veneta</i> , <i>N. tenelloides</i> , <i>N. frustulum</i> and <i>N. palea</i> . Graskop WWTW may be exacerbating conditions at the site.	3

C13.5 REC: A/B

PES	REC	Comments	Conf
A/B	А	Improve nutrient levels and reduce temperature increases with more flow.	3

C13.6 AEC: C

PES	AEC	Comments	
A/B	B/C	Increased nutrient loads from Graskop WWTW at lower flows will exacerbate problems relating to Temp, DO and nutrient input and lead to a drop in EC.	4

C14 EWR 5: MARITE (MARITE RIVER)

C14.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES.	
Limited phytoplankton, periphyton + diatoms ($n = 1$).	
No DO data.	2
Limited temperature and turbidity data from Week <i>et al.</i> (1995).	3
Use of Water Quality on CD to provide information for some variables.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C14.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H011Q01; n=84, 1979 - 1981.	3

Wat	er Quality Constituents	Value: RC	
Inorganic salts (mg/L)	ic salts No data available.		
Nutrients	Soluble Reactive Phosphate (SRP)	0.005	
(mg/L)	Total Inorganic Nitrogen (TIN)	0.08	
	pH (5 th +95 th percentiles)	6.2+7.4	
Physical variables	Turbidity (NTU)	-	
	Electrical conductivity (mS/m)	25.6	

C14.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C31 and C32.

Table C31Water quality table for EWR 5

RIVER Marite River		Water Quality Monitoring Points					
WQSU2, Marite River		River	RC	X3H011Q01, '79-'81, n=84			
EWR SITE		5		PES	X3H011Q01, '04-'07, n=129		
Confidence assessment Confidence in the assed		essment is moderate-high, as little DO, temp., turbidity or meta					
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment		
	MgSO	D 4		-	TEACHA could not be used and EC used		
	Na ₂ S	O4		-	as surrogate.		
Inorganic	MgCl ₂			-			
salts (mg/L)	CaCl ₂			-			
(NaCl			-			
	CaSO ₄			-			
Nutrients	SRP			0.013	B (1)		
(mg/L)	TIN			0.28	B (1)		
Physical	pH (5	^{5th} -95 th perc	centile)	7-7.9	A (0) as natural category was re- benchmarked		
variables	Temp	perature		-	Some temperature data from Weeks et al.		

	Dissolved oxygen	-	('95). Site downstream of Inyaka Dam. (assumed constant release from multi-level outlets. Dam completed 1999)
	Turbidity (NTU)	Mean: 12 NTU Maximum value: 30 NTU (Weeks et al., 1995)	Due to constant release, turbidity levels now low most of the time.
	Electrical conductivity (mS/m)	8.9	A (0)
	Chl-a: periphyton	57.85	D (3) (n=1)
Response	Chl-a: phytoplankton	1.57	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.4	
	Diatoms	SPI=19.4	A (0) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)		B (84.44)

The present state of the water quality at EWR 5 is scored as a **B category** (see Table C32). Due to the data available, the assessment is of **moderate-high** confidence.

Table C32 EWR 5: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	0.00	4.00
SALTS	4	50	0.00	4.00
NUTRIENTS	3	60	1.50	4.00
TEMPERATURE	1	100	1.00	4.00
TURBIDITY	2	80	1.00	3.00
OXYGEN	1	100	1.00	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	84.44			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Disturbed catchment downstream of Inyaka Dam, with extensive clearing for subsistence use, but due to constant releases from Inyaka Dam, turbidity levels stay low.
- Toxics: Extensive citrus cultivation in the area, so some toxics expected.
- Temperature and oxygen: Site downstream of Inyaka Dam, although a constant release from the dam.

C14.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Increased suspended solids loads. Elevated nutrients and toxics. Temperature and oxygen fluctuations at low flows.	Extensive citrus cultivation in the area. Clearing for subsistence farming. The diatom <i>A. minutissimum</i> indicates anthropogenic disturbances and the presence of diffuse pollutants (upstream citrus farming).	NF	3

C14.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		Although extensive activities in the area, the water quality status seem stable.	3

C14.5 REC: B

PES	REC	Comments	Conf
В	В	No changes are expected under this scenario.	N/A

C14.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	No EWR release and fewer floods would result in less dilution of toxics, higher build-up of nutrients and an expected small increase in turbidity levels.	4

C15 EWR 6: MUTLUMUVI (MUTLUMUVI RIVER)

C15.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES at X3H008Q01 used, and present state extrapolated from EWR8.	
Limited phytoplankton + diatoms ($n = 1$).	
No temperature, DO or turbidity data.	2
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C15.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H011Q01; n = 84, 1979 – 1981.	3

Wat	er Quality Constituents	Value: RC	
Inorganic salts (mg/L)	Its No data available.		
Nutrients	Soluble Reactive Phosphate (SRP)	0.025	
(mg/L)	Total Inorganic Nitrogen (TIN)	0.081	
Physical	pH (5 th +95 th percentiles)	6.83+7.70	
variables	Electrical conductivity (mS/m)	12.48	

C15.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C33 and C34.

Table C33Water quality table for EWR 6

RIVER		Mutlumuvi River		Water Quality Monitoring Points		
WQSU		1, Sand River		RC		X3H008Q01, '77-'79, n=50
EWR SITE		6		PES		X3H008Q01, '03-'06, n=44
Confidence assessment			Confidence in the assessment is low , as little DO, temp., turbidity or metal data. Data only available to 2006. Extrapolating from X3H008Q01 on the Sand River + using on-site data.			
Water Qualit	y Cons	stituents		Value		Category (Rating) / Comment
	MgS0	D 4		-		TEACHA could not be used and EC
	Na ₂ S	Na ₂ SO ₄				used as surrogate.
Inorganic	MgCl ₂			-		
salts (mg/L)	CaCl ₂			-		
(NaCl			-		
	CaSO ₄			-		
	SRP			0.032		B (1) as natural category was re-
Nutrionts				(<0.02:	on-site,	benchmarked. System seems naturally
(mg/L)	TIN			0.45		B (1)
				(1.933:	on-site,	
		th orth a sa		Nov 07)	0	D (1)
Physical	рН (5	9"-95" per	centile)	7.46-8.1	2	В (1)
variables	Temperature		-		Temperature not considered a problem	

	Dissolved oxygen	-	as there are no thermal impacts and not
	Turbidity (NTU)	-	 downstream of a dam. However the river is alluvial in places, which would exacerbate temperature and oxygen fluctuations. Poor land management results in elevated turbidity levels.
	Electrical conductivity (mS/m)	35.1 (18.7: on-site, Nov 07)	B (1)
	Chl-a: periphyton	-	
Posnonso	Chl-a: phytoplankton	0.35	A (0) (n=1)
variable	Biotic community composition: macroinvertebrate (ASPT) score	5.9	
	Diatoms	SPI=15.6	B (1) (n=1)
OVERALL S	ITE CLASSIFICATION (from PAI)		B/C (80.92)

The present state of the water quality at EWR 6 is scored as a **B / C category** (see Table C34). Due to the data available, the assessment is of **low** confidence.

Table C34 EWR 6: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	4	50	1.00	4.00
SALTS	4	50	1.00	4.00
NUTRIENTS	3	80	1.50	3.00
TEMPERATURE	2	95	1.00	3.00
TURBIDITY	4	70	1.50	3.00
OXYGEN	1	100	1.00	4.00
TOXICS	1	100	0.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	80.92			
PHYSICO-CHEMICAL CATEGORY	B/C			
BOUNDARY CATEGORY				

Notes

- Nutrients: Indicators (n = 1) indicate some pollution.
- Turbidity: Some turbidity expected due to catchment activities.
- Temperature and oxygen: As the river stops flowing, temperature and oxygen fluctuations will take place.

C15.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
B/C	Elevated nutrient levels. Elevated turbidity and temperature. Reduced oxygen levels.	Subsistence farming and extensive urban/rural settlements. Some forestry activities.	NF	2

C15.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C	Short term	The presence of pollution tolerant diatom species, although in very small numbers, indicates that upstream anthropogenic activities may be impacting slightly on this EWR site.	2

C15.5 REC: B

PES	REC	Comments	Conf
B/C	B/C	This scenario will maintain the current EC.	

C15.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	A deterioration in land management will result in higher nutrient and turbidity levels. Use of fertilizers and pesticides will lead to the presence of toxics in the system. Interruptions in flow will result in oxygen and temperature fluctuations.	3

C16 EWR 7: TLULANDZITEKA (TLULANDZITEKA RIVER)

C16.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES at X3H008Q01 used, and present state extrapolated from EWR8. Limited phytoplankton, periphyton + diatoms (n = 1).	1
No temperature, DO or turbidity data.	2
Little metal data.	
EC used instead of aggregated salts (as TEACHA could not be used).	

C16.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H008Q01; n = 82, 1977 – 1979.	2

Wat	er Quality Constituents	Value: RC		
Inorganic salts (mg/L) No data available.				
Nutrients	Soluble Reactive Phosphate (SRP)	0.025		
(mg/L)	Total Inorganic Nitrogen (TIN)	0.081		
Physical	pH (5 th +95 th percentiles)	6.83+7.70		
variables	Electrical conductivity (mS/m)	12.48		

C16.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C35 and C36.

Table C35 Water quality table for EWR 7

RIVER		Tlulandziteka River		Water Quality Mo	Water Quality Monitoring Points	
WQSU		2, Sand River		RC	X3H008Q01, '77-'79, n=50	
EWR SITE		7		PES	X3H008Q01, '03-'06, n=44	
Confidence a	assessment Confidence in the ass only available to 2006 site data.		essment is low , as little DO, temp., turbidity or metal data. Data b. Extrapolating from X3H008Q01 on the Sand River + using on-			
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment	
	MgSO	D 4		-	TEACHA could not be used and EC used	
	Na ₂ S	O4		-	as surrogate.	
Inorganic	MgCl ₂			-		
salts (mg/L)	CaCl ₂			-		
(NaCl			-		
	CaSO ₄			-		
	SRP			0.032	B (1) as natural category was re-	
Nutrients					eutrophic.	
(mg/L)	TIN			0.45 (0.57: on-site,	B (1)	
Physical variables	pH (5	th -95 th per	centile)	7.46-8.12	B (1)	
	Temp	perature		-	Site is downstream of Kasteel Dam on a	
	Dissolved oxygen Turbidity (NTU)	-	tributary. Temperature and oxygen fluctuations fluctuations expected due to changes in flow.			
--	---	-----------------------------------	--	--		
	Electrical conductivity (mS/m)	35.1 (8.9: on-site, Nov 07)	B (1)			
	Chl-a: periphyton	54.05	D (3) (n=1)			
Response	Chl-a: phytoplankton	1.59	A (0) (n=1)			
variable	Biotic community composition: macroinvertebrate (ASPT) score	6.2				
	Diatoms	SPI=12.8	B/C (1.5) (n=1)			
OVERALL SITE CLASSIFICATION (from PAI)		C (76.6)				

The present state of the water quality at EWR 7 is scored as a **C category** (see Table C36). Due to the data available, the assessment is of **low** confidence.

Table C36EWR 7: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	5	50	1.00	4.00
SALTS	5	50	1.00	4.00
NUTRIENTS	4	60	2.00	3.00
TEMPERATURE	2	90	1.00	3.00
TURBIDITY	3	80	2.00	3.00
OXYGEN	1	100	1.00	4.00
TOXICS	1	100	0.50	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	76.60			
PHYSICO-CHEMICAL CATEGORY	С			
BOUNDARY CATEGORY				

Notes

- Nutrients: Periphyton + diatoms (n = 1 for both indicators) indicate some pollution.
- Turbidity: Poor land management results in elevated turbidities.
- Toxics: Agricultural and forestry activities will probably result in an increase in toxics.
- Impacts on temperature and oxygen seen due to fluctuating flows.

C16.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Elevated nutrients and turbidity levels. Low flows impact on oxygen and temperature levels.	Poor land management in the catchment. No releases from upstream dam.	NF	2

C16.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
Upper C	Negative	Lower C	5 yrs	Diatom indicators suggest natural/anthropogenic disturbances and indicate the presence of diffuse pollutants at the site.	2

C16.5 AEC: B

PES	AEC	Comments	
С	В	Improved flows will assist in reducing nutrient levels, and reduce fluctuations in temperature and oxygen. Improved land management will drop turbidity levels.	2

C16.6 AEC: D

PES	AEC	COMMENTS	CONF
С	D	These changes would result in elevated nutrients, toxics and turbidity levels; and greater fluctuations in temperature and oxygen levels. Under these conditions of less dilution, salt levels are also expected to increase.	2

C17 EWR 8: LOWER SAND (SAND RIVER)

C17.1 DATA AVAILABILITY

Data availability	Conf
DWAF monitoring data for RC and PES, but present state data only until 2006. Limited diatom data ($n = 1$); no peri - or phytoplankton data.	
No DO and metal data. Limited temperature and turbidity data from Week <i>et al.</i> (1995).	3
EC used instead of aggregated salts (as TEACHA could not be used).	

C17.2 REFERENCE CONDITIONS

Reference conditions	Conf
DWAF monitoring data: X3H008Q01; n = 82, 1977 – 1979.	3

Wat	er Quality Constituents	Value: RC			
Inorganic salts (mg/L)	No data available.				
Nutrients	Soluble Reactive Phosphate (SRP)	0.025			
(mg/L)	Total Inorganic Nitrogen (TIN)	0.081			
	pH (5 th +95 th percentiles)	6.83+7.70			
Physical variables	Turbidity (NTU)	-			
	Electrical conductivity (mS/m)	12.48			

C17.3 RESULTS

The PAI and water quality tables, which are completed as part of the assessment and assigns the EcoStatus rating for water quality, are shown below as Tables C37 and C38.

Table C37 Water quality table for EWR 8

RIVER		Sand River		Water Quality Me	onitoring Points		
WQSU		4, Sand River		RC	X3H008Q01, '77-'79, n=50		
EWR SITE		8		PES	X3H008Q01, '03-'06, n=44		
Confidence a	assess	ment	Confidence in the ass Data only available to	essment is moderate , as little DO, temp., turbidity or metal data. 2006.			
Water Qualit	y Cons	stituents		Value	Category (Rating) / Comment		
	MgSC	D 4		-	TEACHA could not be used and EC used		
Inorganic	Na ₂ S	O ₄		-	as surrogate.		
	MgCl ₂			-			
salts (mg/L)	CaCl ₂			-			
(9, -)	NaCl			-			
	CaSO ₄			-			
Nutrients (mg/L)	SRP		0.032	B (1) as natural category was re- benchmarked. System seems naturally eutrophic.			
(9, -)	TIN			0.45	B (1)		
	pH (5	th -95 th perc	centile)	7.46-8.12	B (1)		
Physical variables	Temp	erature		-	Temperature not considered a problem as		
vallables	Disso	lved oxyge	en	-	there are no thermal impacts and not		

	Turbidity (NTU)	Mean: 27 NTU Maximum value: 70 NTU (Weeks et al., 1995)	downstream of a dam. However the river is alluvial and experiences low flows, which would exacerbate temperature and oxygen fluctuations.
	Electrical conductivity (mS/m)	35.1	B (1)
	Chl-a: periphyton	-	
Response	Chl-a: phytoplankton	-	
variable	Biotic community composition: macroinvertebrate (ASPT) score	5.3	
	Diatoms	SPI=13.4	B (1) (n=1)
OVERALL SITE CLASSIFICATION (from PAI)			B (84.48)

The present state of the water quality at EWR 1 is scored as a **B category** (see Table C38). Due to the data available, the assessment is of **moderate** confidence, although no present state data exists for 2007. Data from DWAF's Water Management System (WMS) has been checked against SabiSand Wildtuin on-site data collection (contact: Jonathan Swart).

Table C38EWR 8: PAI

Physico-chemical Metrics	Rank	%wt	Rating	Conf
рН	6	40	1.00	4.00
SALTS	5	50	1.00	4.00
NUTRIENTS	3	80	1.00	3.00
TEMPERATURE	1	100	1.00	5.00
TURBIDITY	4	60	1.50	4.00
OXYGEN	2	95	0.50	4.00
TOXICS	1	100	0.00	5.00
PHYSICO-CHEMICAL PERCENTAGE SCORE	84.48			
PHYSICO-CHEMICAL CATEGORY	В			
BOUNDARY CATEGORY				

Notes

- Nutrients: Diatoms indicate some pollution due to upstream catchment activities.
- Turbidity: Some turbidity expected due to catchment activities. Pools have filled up due to sedimentation (Kleynhans and Swart, pers. comm.).
- Temperature and oxygen: Fluctuations expected due to low flows in winter.

C17.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Elevated nutrients, turbidity levels and temperatures at low flows. Oxygen levels drop at low flows.	Although this site is in a conservation area (the KNP), poor land management upstream is affecting the site.	NF	3

C17.4 TREND

PES	Trend	Tren d PES	Time	Reasons	Conf
В	Stable	В		N/A	3

C17.5 AEC: C

PES	AEC	Comments	Conf
В	С	Lower and longer low flow periods, resulting in more extreme temperature and oxygen fluctuations, and higher nutrient loadings.	3

C18 REFERENCES

Chunnet, Fourie and Partners. 1990. Water resources: Planning of the Sabie River catchment. Report to the South African Department of Water Affairs, Pretoria.

Claassen M., Oelofse, S. and von Molendorf, M. 2002. Ecological Reserve Determination for the Crocodile River Catchment, Appendix 10: Surface water quality.

Department of Water Affairs and Forestry, South Africa (DWAF). 1996. Water quality guidelines. Volume 7: Aquatic Ecosystems. Department of Water Affairs and Forestry, Pretoria.

Department of Water Affairs and Forestry, South Africa (DWAF). 2002. Assessing water quality in Ecological Reserve determinations for rivers: Version 2, Draft 15.0, March 2002. Department of Water Affairs and Forestry, Pretoria.

Department of Water Affairs and Forestry, South Africa (DWAF). 2004a. DWAF Report No. P WMA 05/000/0303: Internal Strategic Perspectives: Inkomati Water Management Area – Version 1 (March 2004). Tlou & Matji (Pty) Ltd.

Department of Water Affairs and Forestry, South Africa (DWAF). 2004b. Inclusion of electrical conductivity (EC) in water quality assessments within ecological Reserve determinations. Report prepared for Department of Water Affairs and Forestry, Pretoria, South Africa.

Department of Water Affairs and Forestry, South Africa. (DWAF) (In press). Methods for determining the Water Quality component of the Ecological Reserve. Report prepared for Department of Water Affairs and Forestry, Pretoria, South Africa by Scherman Consulting.

Froneman, P.W. 2007. Periphyton biomass at selected sites within the Inkomati catchment. Coastal Research Unit, Department of Zoology and Entomology, Rhodes University, Grahamstown.

Kleynhans, C.J., Louw, M.D., Thirion, C., Rossouw, N. and Rowntree, K. 2005. River Ecoclassification: Manual for Ecostatus Determination. First draft for training purposes. Ninham Shand web - site: <u>http://projects.shands.co.za/Hydro/hydro/WQReserve/main.htm</u>.

Moon, B.P., Van Niekerk, G.L., Heritage, K.H. and James, C.S. 1997. A geomorphological approach to the management of rivers in the Kruger National Park: The case of the Sabie River. Transactions of the institute of British Geographers 22: 31 - 48.

Palmer, C.G., Muller, W.J. and Hughes, D.A. 2004. Chapter 6: Water quality in the ecological Reserve. IN: SPATSIM, an integrating framework for ecological Reserve and implementation: incorporating water quality and quantity components for rivers. Hughes D.A. (Ed.) WRC Report No. 1160/1/04, Water Research Commission, Pretoria.

Pegram, G. and Palmer, C.G. 1996. Water quality in the Sabie - Sand River, with some notes on the predictions of impacts associated with flow modification. Sabie - Sand IFR water quality assessment.

Pienaar, U.de V. 1985. Indications of progressive desiccation of the Transvaal lowveld over the past 100 years, and implications for the water stabilization programme in the Kruger National Park. Koedoe 28: 93 - 165.

River Health Programme. 2001. State of the Rivers Report: Crocodile, Sabie - Sand and Olifants River systems. WRC Report No. TT 147/01.

Van Veelen, M. 1991. Kruger National Park – Assessment of the current water quality status. Department of Water Affairs and Forestry, Pretoria. Report No. 0000/00/REQ/3391.

Weeks, D.C., O'Keeffe, J.H., Fourie, A. and Davies, B.R. 1996. A pre - impound study of the Sabie - Sand river system, Mpumalanga with special reference to the predicted impacts on the Kruger National Park. Volume One: The ecological status of the Sabie - Sand River System. WRC Report No 294/1/96. Water Research Commission, Pretoria.

APPENDIX D: DIATOM ANALYSIS AS AN ADDITIONAL PHYSICO-CHEMICAL RESPONS VARIABLE

S Koekemoer, Koekemoer Aquatic Services Dr JC Taylor, University of the Northwest

D1 BACKGROUND AND TERMINOLOGY

D1.1 BACKGROUND

Koekemoer Aquatic Services was approached by WFA to analyse diatom samples taken at the 15 EWR sites as part of the Comprehensive Reserve determination study for the Incomati river system during September and October 2007. The diatom assessment was conducted following a baseline aquatic health assessment in the area, which focused on fish and invertebrates. The aim of the diatom study is to provide additional information concerning the aquatic health and functioning of the River systems, as an extra biomonitoring tool.

Diatoms are of great ecological importance because of their role as primary producers, and form the base of the aquatic food web. They usually account for the highest number of species among the primary producers in aquatic systems (Leira, 2005). Diatoms are photosynthetic unicellular organisms and are found in almost all aquatic and semi-aquatic habitats.

Diatoms are a siliceous class (*Bacilariophyceae* of the phylum *Bacilariophyt*a) of algae. A remarkable aspect of diatoms is their silicon dioxide cell walls. The cell walls are perforated and ornamented with many holes, which are arranged in defined and unique patterns. Identification is based on the nature of these perforations as well as their orientation and densities.

Recent studies, as well as studies in progress, have identified diatoms as useful organisms to include in the suite of biomonitoring tools currently used in South Africa (Bate *et al.*, 2002, De la Rey *et al.*, 2004, Taylor, 2004) both for assessments of current water quality and for establishing historical conditions in rivers in South Africa (Taylor *et al.*, 2005a).

Diatoms have been shown to be reliable indicators of specific water quality problems such as organic pollution, eutrophication, acidification and metal pollution (Rott 1991, Tilman *et al.*, 1982, Dixit *et al.*, 1992, Cattaneo *et al.*, 2004), as well as for general water quality (AFNOR, 2000). The reasons why diatoms are useful tools for biomonitoring are listed by Round (1993):

- Diatoms have a universal occurrence throughout all rivers;
- Field sampling is rapid and easy;
- Cell cycle is rapid and they react quickly to perturbation;
- Diatoms are relatively insensitive to physical features in the environment;
- Cell counting by microscopic techniques is rapid and accurate;
- Cell numbers per unit area of substratum are enormous, making random counts excellent assessments of diatoms;
- The ecological requirements of diatoms are in many cases better known than those of any other group of riverine organisms;
- Permanent records can be made from every sample;
- Diatoms do not have specific food requirements, specialised habitat niches, and are not governed to a major extent by stream flow.

The specific water quality tolerances of diatoms have been resolved into different diatom-based water quality indices, used around the world. In general, each diatom species used in the calculation of the index is assigned two values; the first value reflects the tolerance or affinity of the

particular diatom species to a certain water quality (good or bad) while the second value indicates how strong (or weak) the relationship is. These values are then weighted by the abundance of the particular diatom species in the sample. The diatom index used in the present study is known as the Specific Pollution sensitivity Index (SPI; (Coste in CEMAGREF, 1982), one of the most extensively tested indices in Europe.

Diatom-based water quality indices have recently been evaluated and implemented in South Africa (Taylor 2004, River Health Programme, 2005). De la Rey *et al.* (2004) and Taylor (2004) showed that diatom-based pollution indices may be good bio-indicators of water quality in aquatic ecosystems in South Africa by demonstrating a measurable relationship between water quality variables such as pH, electrical conductivity, phosphorus and nitrogen, and the structure of diatom communities as reflected by diatom index scores.

The close association between diatom community composition and water quality allows for inferences to be drawn about water quality.

D1.2 TERMINOLOGY

Terminology used in this specialist appendix is outlined in Taylor *et al.*, 2007a and summarised below.

Trophy	
Dystrophic	Rich in organic matter, usually in the form of suspended plant colloids, but of a low nutrient content.
Oligotrophic	Low levels or primary productivity, containing low levels of mineral nutrients required by plants.
Mesotrophic	Intermediate levels of primary productivity, with intermediate levels of mineral nutrients required by plants.
Eutrophic	High primary productivity, rich in mineral nutrients required by plants.
Hypereutrophic	Very high primary productivity, constantly elevated supply of mineral nutrients required by plants.
Mineral content	
Very electrolyte poor	< 50 µS/cm
Electrolyte-poor (low electrolyte content)	50 - 100 μS/cm
Moderate electrolyte content	100 - 500 μS/cm
Electrolyte-rich (high electrolyte content)	> 500 µS/cm
Brackish (very high electrolyte content)	> 1000 µS/cm
Saline	6000 μS/cm
Pollution (Saprobity)	
Unpolluted to slightly polluted	BOD <2, O ₂ deficit <15% (oligosaprobic)
Moderately polluted	BOD <4, O ₂ deficit <30% (β-mesosaprobic)
Critical level of pollution	BOD <7 (10), O ₂ deficit <50% (β-ά-mesosaprobic)
Strongly polluted	BOD <13, O ₂ deficit <75% (ά-mesosaprobic)
Very heavily polluted	BOD <22, O ₂ deficit <90% (ά-meso-polysaprobic)
Extremely polluted	BOD >22, O ₂ deficit >90% (polysaprobic)

D2 METHODS

D2.1 SAMPLING

Epilithic diatom samples were taken at EWR 1, 2, 3, 5, and 7 (Crocodile system), and EWR 1 - 6 (Sabie system) from submerged rocks on the riverbed. Epiphytic diatom samples were taken at EWR 4 and 6 due to high flows (EWR 4) and the absence of rocks at EWR 6 for the Crocodile system and at EWR 7 and 8 on the Sabie system due the absence of rocks.

Epilithon and Epiphyton were sampled as outlined Taylor *et al.*, 2005b and Taylor *et al.*, 2007a. These methods were designed and refined as part of the Diatom Assessment Protocol (DAP), a Water Research Commission (WRC) initiative. Taylor *et al.*, 2007a, have based the method manual on several key documents including Kelly *et al.* (1998), CEN (2003), DARES (2004) and Taylor *et al.*, 2005b. Diatom samples were taken at each site by scrubbing the substrate with a small brush and rinsing both the brush and the substrate with distilled water. Samples were taken from five or more cobbles (diameter > 64, \leq 265 mm).

D2.2 ANALYSIS

Preparation of diatom slides followed the Hot HCI and KMnO₄ method as outlined in Taylor *et al.*, 2005b. Counts of diatom valves on slides were made using a Zeiss microscope with phase contrast optics (1000x). The aim of the data analysis was to count diatom valves to produce semiquantitative data from which ecological conclusions can be drawn (Taylor *et al.*, 2007a). Schoeman, (1973) and Battarbee (1986) concluded that a count of 400 valves per slide is satisfactory for the calculation of relative abundance of diatom species and this range is supported by Prygiel *et al.* (2002), according to Taylor *et al.* (2007a). Therefore a count of 400 valves per sample or more was counted and the nomenclature followed Krammer and Lange-Bertalot (1986 - 91). Diatom index values were calculated in the database programme OMNIDIA (Lecointe *et al.*, 1993) for epilithon and epiphyton data in order to generate index scores to general water quality variables.

D2.3 DIATOM BASED WATER QUALITY SCORES

The European numerical diatom index, the Specific Pollution sensitivity Index (SPI) was used to interpret results. De la Rey *et al.*, 2004, concluded that the SPI reflects certain elements of water quality with a high degree of accuracy due to the broad species base of the SPI. The Prygiel and Coste (2000) class boundaries were adapted for the Reserve studies to accommodate boundary ECs and applied during the interpretation of the results. The interpretation of the SPI scores is given in Table D1.

SPI score	Class	Ecological Category
>17.3		А
16.8 – 17.2		A/B
13.3 – 16.7		В
12.9 – 13.2	GOOD QUALITY	B/C
9.2 – 12.8	MODERATE	С
8.9 – 9.1	QUALITY	C/D
5.3 - 8.8		D
4.8 - 5.2	POOR QUALITY	D/E
< 4.8	BAD QUALITY	E

Table D1 Adjusted class limit boundaries for the SPI index applied in this study

D3 RESULTS: CROCODILE RIVER SYSTEM

D3.1 SAMPLING SITES

Details of the sampling sites are given in Table D2.

Table D2Diatom sampling sites

Sample	Cite	Diver	Co-ore	dinates	Resource	Water Quality	
number	Site	River	South	East	Unit	Sub Unit	
618	EWR 1	Crocodile River	S25 29.647	E30 08.656	MRU A	WQSU2	
619	EWR 2	Crocodile River	S25 24.555	E30 18.955	MRU A	WQSU2	
620	EWR 3	Crocodile River	S25 27.127	E30 40.865	MRU B	WQSU3	
621	EWR 4	Crocodile River	S25 30.146	E31 10.919	MRU D	WQSU4	
622	EWR 5	Crocodile River	S25 28.972	E31 30.464	MRU E	WQSU6	
623	EWR 6	Crocodile River	S25 23.430	E31 58.467	MRU E	WQSU6	
624	EWR 7	Kaap River	S25 38.968	E31 14.572	MRU A	WQSU7	

The main land use activities in the different Resource Units are given in Table D3.

Table D3 Main land use activities in the Resource Units

Resource Unit	Land use activities ¹
MRU A	Land-cover is largely grassland with some agricultural, forestry and urban activities, e.g. trout-farming around Dullstroom.
MRU B	Land-cover is farming (largely citrus), with alien vegetation, plantations and urban settlements present. Sappi Ngodwana is located on the Elands River system, with associated pollution problems.
MRU D	Land-cover is farming (largely citrus), with extensive alien vegetation, plantations and urban settlements and associated activities present, i.e. Nelspruit and KaNyamazane. A number of hazardous waste sites, mines and processing plants are found in the area. The polluted Wit River enters the Crocodile River in this WQSU.
MRU E	Land-cover is urban areas and associated impacts, extensive irrigation of sugar-cane, Selati sugar mill, forestry, agriculture e.g. banana and citrus plantations, citrus processing, conservation activities i.e. KNP, recreation i.e. lodges.
MRU A (Kaap River)	Land-cover is farming (e.g. paw-paws, bananas, sugar cane), sawmill and pole treating in the vicinity and mining upstream. Pollution sources from upstream users include irrigation, urban areas and old gold mining activities.

1 Information obtained from DWAF 2008, Appendix C (This report).

D3.2 DIATOM ASSEMBLAGE

The diatom abundances of the different EWR sites are given in Table D4.

Table D4Diatom species assemblage and abundances of samples for each EWR site

	Site and sample number						
Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7
	618	619	620	621	622	623	624
Achnanthes crassa Hustedt	7	13	5			1	
Achnanthes lanceolata (Breb.) Grun. ssp. frequentissima Lange-Bertalot		1				3	
Achnanthes minutissima Kutzing v.minutissima Kutzing (Achnanthidium)	140 [*]	151	9	2	4	34	186
Achnanthes minutissima Kutzing .saprophila Kobayasi et Mayama	20	52	40	7	4		51
Achnanthes standerii Cholnoky	88	1					
Achnanthes subaffinis Cholnoky	15	23	6			3	
Achnanthidium affine (Grun) Czarnecki						12	16
Achnanthidium exiguum (Grunow) Czarnecki	1					3	
Amphora normanii Rabenhorst						2	
Amphora pediculus (Kutzing) Grunow							7
Aulacoseira granulata (Ehr.) Simonsen					7		
Aulacoseira granulata (Ehr.) Simonsen .angustissima (O.M.)Simonsen					20		
Craticula molestiformis (Hustedt) Lange-Bertalot		3	2	3	1	2	1
Cocconeis pediculus Ehrenberg			36	8	1	15	44
Cocconeis placentula Ehrenberg placentula		3	149	92	5	194	16
Cocconeis placentula Ehrenberg pseudolineata Geitler		2	1	3			
Cocconeis placentula Ehrenberg euglypta (Ehr.)Grunow			4	35			
Craticula halophila (Grunow ex Van Heurck) Mann						1	
Craticula vixnegligenda Lange-Bertalot	8	5					
Cyclostephanos dubius (Fricke) Round					27		
Cyclostephanos invisitatus (Hohn & Hellerman)Theriot Stoermer & Hakansson				1	53		1
Cyclotella ocellata Pantocsek			4	1	1		
Cymatopleura solea (Brebisson) W.Smith var.solea		1					
Cymbella affinis Kutzing var.affinis	1	4				3	1
Cymbella aspera (Ehrenberg) H.Peragallo		1					
Cymbella kappii (Cholnoky) Cholnoky							2
Cymbella minuta Hilse ex Rabenhorst (Encyonema)	1	2					
Cymbella simonsenii Krammer	1						
Cymbella symbiformis							2
Cymbella tumida (Brebisson)Van Heurck				1	1		1
Cymbella ventricosa Agardh			3				
Denticula kuetzingii Grunow var.kuetzingii		42					8
Diadesmis confervacea Kützing				2			
Diatoma vulgaris Bory 1824				3	196		
Diploneis puella (Schumann) Cleve		1					
Diploneis smithii (Brebisson) Cleve var. smithii	2						
Encyonopsis leei Krammer var. sinensis Metzeltin & Krammer	28	7	57				
Encyonopsis microcephala (Grunow) Krammer		5					
Encyonopsis subminuta Krammer & Reichardt	30	15	1				1
Eolimna minima (Grunow) Lange-Bertalot			7	6			4
Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin			1	47		3	4
Epithemia adnata (Kutzing) Brebisson			7				
Eunotia minor (Kutzing) Grunow in Van Heurck		4		3	1		
Fallacia monoculata (Hustedt) D.G. Mann						2	1
Fistulifera saprophila (Lange-Bertalot & Bonik) Lange-Bertalot				53		7	
Fragilaria biceps (Kutzing) Lange-Bertalot						11	
Fragilaria brevistriata Grunow (Pseudostaurosira)	2						
Fragilaria capucina Desmazieres vaucheriae (Kutzing)Lange-Bertalot	13				8		1

	Site and sample number						
Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7
		619	620	621	622	623	624
Fragilaria fasciculata (C.A. Agardh) Lange-Bertalot sensu lato	2				-		
Fragilaria pinnata Ehrenberg pinnata (Staurosirella)	1						
Fragilaria tenera (W.Smith) Lange-Bertalot		4			1		
Fragilaria ulna (Nitzsch.) Lange-Bertalot var. ulna		1					
Frustulia vulgaris (Thwaites) De Toni	2						
Frustulia weinholdii Hustedt		1					
Gomphonema affine Kutzing						6	
Gomphonema minutum (Ag.) Agardh f. minutum		2	3			24	
Gomphonema parvulum (Kützing) Kützing parvulum f. parvulum		2	-	7	2	5	3
Gomphonema parvulum var.lagenula (Kutz.) Frenguelli				1		1	
Gomphonema parvulum var.parvulius Lange-Bertalot & Reichardt	1						
Gomphonema parvulum parvulum f.saprophilum Lange-Bert.&Reichardt				3			
Gomphonema pumilum (Grunow) Reichardt & Lange-Bertalot				1		3	5
Gomphonema species		12	15	3		13	8
Gomphonema ventricosum Gregory	1			Ŭ		5	•
Gomphonema venusta Passy, Kociolek & Lowe	4		21	1			1
Melosira varians Agardh			2.	1	5		
Navigula antonii Lange-Bertalot				1			
Navioula anionin Earlige Bertalot	2						
	1	4	3	7	1	1	
	3		1	,	1	3	
	5	1	1		1	5	
		'	5				
Navicula duloitaria		2	5	2			
		2		2		1	
	ł					-	2
						2	2
						3	
Navioula schroeteri Meister schroeteri			4	6		2	2
		F	4	0			2
		5			F		
Navioula tripunctata (O.F.Muller) Bory		4			5		
		1				47	
Navicula veneta Kutzing	2			2		17	1
Navicula viridula (Kutzing) Enrenberg				7			-
Navicula zanoni Hustedt				2	4		3
Nitzschia acicularis (Kutzing) W.M.Smith	3	4					
Nitzschia agnita Hustedt	1						
Nitzschia amphibia Grunow f.amphibia			1	8		4	1
Nitzschia aurariae Cholnoky				1			
Nitzschia capitellata Hustedt in A.Schmidt & al.				2			
Nitzschia communis Rabenhorst	1						
Nitzschia dissipata (Kutzing) Grunow media (Hantzsch.) Grunow	2						
Nitzschia dissipata (Kutzing)Grunow dissipata	3	5	18	4	13		1
Nitzschia etoshensis Cholnoky				1			
Nitzschia filiformis (W.M.Smith) Van Heurck filiformis				2			
Nitzschia frustulum (Kutzing) Grunow frustulum			1	1		3	
Nitzschia gracilis Hantzsch	1						
Nitzschia heufleriana Grunow							4
Nitzschia intermedia Hantzsch ex Cleve & Grunow				1			
Nitzschia liebetruthii Rabenhorst liebetruthii			2	3	1	1	
Nitzschia linearis (Agardh) W.M.Smith linearis	1	4					

	Site and sample number							
Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7	
	618	619	620	621	622	623	624	
Nitzschia linearis (Agardh) W.M.Smith subtilis (Grunow) Hustedt	4							
Nitzschia obtusa W.M.Smith kurzii (Rabenhorst) Grunow						4		
Nitzschia palea (Kutzing) W.Smith		5						
Nitzschia perspicua Cholnoky				6				
Nitzschia pusilla (Kutzing) Grunow	1					4	6	
Nitzschia recta Hantzsch in Rabenhorst		4						
Nitzschia species		4		12	1	2	2	
Nitzschia valdecostata Lange-Bertalot et Simonsen				1				
Placoneis dicephala (W.Smith) Mereschkowsky		1	1					
Reimeria uniseriata Sala Guerrero & Ferrario						2		
Rhoicosphenia curvata (Kutzing) Grunow				1			14	
Rhopalodia gibba (Ehr.) O.Muller var.gibba						1		
Sellaphora pupula (Kutzing) Mereschkowksy	3		1	1				
Sellaphora seminulum (Grunow) D.G. Mann	1	3		1				
Stephanodiscus agassizensis Hakansson & Kling					22			
Stephanodiscus hantzschii Grunow in Cl. & Grun. 1880					16			
Surirella angusta Kutzing				1				
Tryblionella apiculata Gregory							1	
Total count	404	401	408	357	401	401	400	

• Shaded blocks indicate dominant species per sample

D3.3 SPI SCORES

The European numerical diatom index, the Specific Pollution sensitivity Index (SPI) was used to interpret results. De la Rey *et al.*, 2004, concluded that the SPI reflects certain elements of water quality with a high degree of accuracy due to the broad species base of the SPI.

The SPI for the samples is given in Table D5 and the diatom based ecological classification for water quality is given in Table D6.

Table D5SPI scores for the different samples

EWR site	Site name	River	No species	Specific Pollution sensitivity Index (SPI)	Class	Category
EWR 1	Valyspruit	Crocodile	35	16.5	Good quality	В
EWR 2	Goedenhoop	Crocodile	37	15.3	Good quality	В
EWR 3	Poplar Creek	Crocodile	28	14.6	Good quality	В
EWR 4	KaNyamazane	Crocodile	46	9.7	Moderate quality	С
EWR 5	Malelane	Crocodile	26	13.2	Moderate quality	B/C
EWR 6	Nkongoma	Crocodile	36	13.1	Moderate quality	B/C
EWR 7	Honeybird	Каар	33	15.8	Good quality	В

Diatom based ecological classification								
Site	рН	Salinity	Organic nitrogen	Oxygen levels	Pollution levels	Trophic status		
EWR 1	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly polluted	Oligo - Eutrophic		
EWR 2	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly polluted	Oligo - Eutrophic		
EWR 3	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Slightly to moderately polluted	Eutrophic		
EWR 4	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Moderately polluted	Eutrophic		
EWR 5	Alkalibiontic	Fresh (<.2% salinity)	Slightly elevated concentrations of organically bound nitrogen.	Moderate saturation (>50%)	Moderately polluted	Mesotrophic		
EWR 6	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Moderately polluted	Eutrophic		
EWR 7	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Moderately polluted	Oligo - Eutrophic		

Table D6 Generic diatom based ecological classification

D3.4 DISCUSSION

The dominant species in the diatom samples for the EWR sites are given and the diatom assemblages are discussed. Note: Species contributing 5% or more to the total count were classified as dominant species.

D3.4.1 EWR 1: Valyspruit

Site	Dominant species	Species contribution to sample (%)
	Achnanthidium minutissimum	35
EWR 1	Encyonopsis subminuta	8
	Encyonopsis leei sinensis	7
	Acnanthidium saprophilum	5
	Achnanthes standerii	5

EWR 1 lies within MRU A and WQSU 1. Land-cover is largely grassland with some agricultural, forestry and urban activities, e.g. trout farming around Dullstroom. The site is a single thread, sinuous alluvial channel. Cobbles dominate the bed. Transport capacity has been reduced due to the upstream impoundments as well as irrigation and timber plantations upstream of the site. Cut banks and erosion are extensive at this site (Appendix C, this report).

A. *minutissima* was the dominant species in this sample and favours well oxygenated clean fresh water (Taylor *et al.*, 2007b). *A. minutissima* is an indicator of natural/anthropogenic disturbances

and indicates the presence of diffuse pollutants (Kovács, 2007). According to Ács *et al.* (2004), *A. minutissimum* indicates low levels of disturbance at this site with 35% dominance. The presence of pollution tolerant species, although in very small numbers, indicates that upstream anthropogenic activities may be impacting slightly on this EWR site and may be the source of slightly elevated concentrations of organically bound nitrogen. This is supported by the presence of *Acnanthidium saprophilum* which favours organically enriched eutrophic waters (Taylor *et al.*, 2007b).

The endemic *A. standerii* requires high water quality as well as oxygenated water (Taylor *et al.*, 2007b). This species is an indicator of circumneutral to slightly acidic water. *E. leei sinensis* made up 7% of the count and *E. subminuta* accounts for 8% of the population. *E. subminuta* occurs in well oxygenated waters and *E. leei sinensis* occurs in slightly acidic waters with a low to moderate electrolyte content.

The SPI indicates good water quality (16.5) at this site and the diatom based ecological classification indicates well oxygenated circumneutral water. The database programme OMNIDA ver. 3 does not include SA endemics in index calculations and this may influence the pH variable to some extent (more acidic). Due to the presence of *A. standerii, E. leei sinensis,* and a few other species (*Navicula cryptocephala, Nitzschia acicularis*) there is a general indication the water is rather slightly acidic than circumneutral. Overall the diatom water quality is in a B category. The current trend should be stable for this site if current conditions prevail.

D3.4.2 EWR 2: Goedehoop

Site	Dominant species	Species contribution to sample (%)
	Achnanthidium minutissimum	38
EWR 2	Denticula kuetzingii	10.4
	Acnanthidium saprophilum	13
	Acnanthes subaffinis	5.7

EWR 2 lies within MRU A and WQSU 1. Land cover is largely grassland with some agricultural, forestry and urban activities, e.g. trout farming. The site is a single thread, sinuous alluvial channel. Gravel dominates the bed. Transport capacity has been reduced due to the upstream impoundments as well as irrigation and timber plantations upstream of the site. Cut banks and erosion are extensive at this site (Appendix C, this report).

As with EWR 1 the dominant species at EWR 2 was A. *minutissima* which indicates well oxygenated circumneutral water. According to Ács *et al.* (2004), *A. minutissimum* indicates low levels of disturbance at this site with 38% dominance. Anthropogenic activities upstream of this site may have a bigger impact on this site and the source of slightly more elevated concentrations of organically bound nitrogen. The presence of *A. saprophilum* which indicates enrichment and favours eutrophic water (Taylor *et al.*, 2007b) and the presence of highly pollutant tolerant species (*S. seminulum*, *N. palea*, *N. tenelloides*, *N. gregaria*, *N. capitatoradiata*), although in small numbers indicate that the pollution levels are higher at this site than at EWR 1. The presence of *D. kuetzingii*, which favours high content electrolyte waters (Taylor *et al.*, 2007b) along with *S. seminulum*, *N. palea*, *N. capitatoradiata*, *N. gregaria*, and *N. acicularis* indicates that salinity may be an increasing problem at this site.

The SPI indicates good water quality (15.3) at this site and the diatom based ecological classification indicates well oxygenated circumneutral water. Overall the diatom water quality is in a B category but the site is more impacted on than EWR 1. The trend for this site should be stable except for an increase in salinity if there is a reduction in flow.

D3.4.3 EWR 3: Poplar Creek

Site	Dominant species	Species contribution to sample (%)
	Cocconeis placentula	37
EWR 3	Encyonopsis leei sinensis	14
	Achnanthidium saprophilum	9.8
	Cocconeis pediculus	8.8
	Gomphonema venusta	5.1

EWR 3 lies within MRU B and WQSU 3. Land cover is farming (largely citrus), with alien vegetation, plantations and urban settlements present. Sappi Ngodwana is located on the Elands River system, with associated pollution problems. The site is a single thread, sinuous alluvial channel. Cobble dominates the bed (Appendix C, this report).

The dominant *C. placentula* has a broad ecological range and is found in most running waters except where nutrients are low or acidic conditions prevail (Taylor *et al.*, 2007b). It is tolerant of moderate organic pollution and also extends into brackish waters (Kelly *et al.*, 2001). According to Fore and Grafe (2002), *C. placentula* and *C. pediculus* prefer alkaline eutrophic conditions. The presence of *A. saprophilum* (9.8% abundance) indicates enrichment and favours eutrophic water (Taylor *et al.*, 2007b). Although not dominant, *N. dissipata* is a good indicator of hard water (calcium based salinity) and favours alkaline conditions (Taylor, *pers comm.*).

The SPI indicates good water quality (14.6), although this falls within the lower ranges of the classification and the diatom based ecological classification indicates low oxygen saturation and alkaline conditions. Overall the diatom water quality is in a B category but the high flows (1 m³/s on day of sampling) may have had a dilution effect (agricultural runoff) as there are species present that are very pollution tolerant and indicators of eutrophic conditions. The presence of *E. adnata* is an indication of elevated temperatures and turbidity at this site (Kwena dam) and this along with the nutrient load from agricultural run off may be the source of low oxygen saturation. The trend for this site is negative, in terms of water quality, as the observed flow has had a dilution effect. Present diatoms indicate increased eutrophication and increased salinity at lower flows, although the constant releases from Kwena dam would indicate a stable trend for water quality during dry seasons.

Site	Dominant species	Species contribution to sample (%)
	Cocconeis placentula placentula	26
EWR 4	Fistulifera saprophila	15
	Eolimna subminuscula	13
	Cocconeis placentula euglypta	10

D3.4.4 EWR 4: KaNyamazane

EWR 4 lies within MRU D and WQSU 4. Land-cover is farming (largely citrus), with extensive alien vegetation, plantations and urban settlements and associated activities present, i.e. Nelspruit and KaNyamazane. A number of hazardous waste sites, mines and processing plants are found in the area. The polluted Wit River enters the Crocodile River in this WQSU. The site is a single thread, sinuous alluvial channel and cobble dominates the bed (Appendix C, this report).

The dominant species at this site is *C placentula*, and its ecological preferences are discussed in section 2.4.2. EWR 4 is situated downstream from Nelspruit and KaNyamazane and it is expected that the SPI score would be much lower than 9.7 due to urban run off and industrial impacts. During sampling the flow was 7.5 m³/s, and these conditions definitely had a dilution effect of the water quality related impacts. This is evident in the species composition of the diatom sample.

E. subminiscula, a cosmopolitan species common in electrolyte rich, strongly polluted rivers and flowing waters while *F. saprophila* (a cosmopolitan species found in highly eutrophic, anthropogenically impacted, highly polluted waters and one of the most resistant species of all) (Taylor *et al.*, 2007b) are present in high abundances at this site. Of the 46 species present, 14 species (e.g. *G. parvulum*, *N. capitellata* and *N. capitatoradiata*) are tolerant to critical levels of pollution and although they are present in small numbers their presence indicates that this site was highly polluted before the high flow event.

The SPI index indicates moderate water quality (9.7), although this falls within the lower ranges of the classification and the diatom based ecological classification indicates low oxygen saturation and circumneutral water. This is not a true reflection of the conditions at this site due to elevated flows (7 m³/s). It is expected that the water quality will deteriorate drastically with low flows and that the electrolyte content could increase due to the presence of saline tolerant species (*N. perspicua*, and *N. etoshensis*). It is envisaged that bicarbonates and sulphides will increase during low flows due to the presence of *N. valdecostata* while the presence of *N. veneta* indicates the presence of industrial effluent. The trend is stable if current conditions prevail.

D3.4.5 EWR 5: Malelane

Site	Dominant species	Species contribution to sample (%)
	Diatoma vulgaris	49
EWR 5	Cyclostephanos invisitatus	13
	Cyclostephanos dubius	7
	Aulacoseira granulata var.angustissima	5
	Stephanodiscus agassizensis	5

EWR 5 is situated within MRU E and WQSU 6. Land cover is urban areas and associated impacts, extensive irrigation of sugar-cane, Selati sugar mill, forestry, agriculture e.g. banana and citrus plantations, citrus processing, conservation activities i.e. KNP, recreation i.e. lodges. The site is a single thread, sinuous alluvial channel and sand dominates the bed (Appendix C, this report).

EWR 5 is dominated by *D. vulgaris* and is generally found in mesotrophic to eutrophic waters with average electrolyte content and prefers alkaline conditions (Taylor *et al.*, 2007b and Fore and Grafe, 2002). This species does however grow well under higher concentrations of eutrophication (Kelly *et al.*, 2001) which may explain the lower level of oxygen saturation and indicate that run off

from farming activities are causing increased eutrophication at this site. This stretch of the river has not been flowing for some time and the sample was taken after good rain. The dominance of *D. vulgaris* along with *S. agassizensis* and *A. granulata angustissima* indicates an accumulative effect of eutrophication caused by agricultural activities and urbanization upstream of the site.

The presence of *S. agassizensis*, which prefers turbidity, *C. invisitatus* and *S. hantzschii* indicate elevated electrolyte concentrations while *C. dubius* indicates elevated chloride concentration as well as calcareous, alkaline waters (Taylor *et al.*, 2007b). Although not dominant, *N. dissipata* is a good indicator of hard water (calcium based salinity) and favours alkaline conditions (Taylor, *pers comm.*).

The SPI index indicates moderate water quality (13.2), although this falls within the lower ranges of the classification and the diatom based ecological classification indicates moderate oxygen saturation and alkalibontic water. The diatom water quality is in a B/C category but due to the presence of pollution tolerant species and species favouring elevated electrolyte levels, the trend for this site is negative.

D3.4.6 EWR 6: Nkongoma

Site	Dominant species	Species contribution to sample (%)
	Cocconeis placentula placentula	48
EWR 6	Achnanthidium minutissimum	8
	Gomphonema minutum	5

EWR 6 is situated within the same MRU and WQSU than EWR 5. The site is a single thread, straight bedrock dominated channel and sand dominates the bed (Appendix C, this report). The dominant species at this site is *C placentula*, and its ecological preferences are discussed in section D3.4.2. Although the other dominant species indicate well oxygenated water (*A. minutissimum*) and tolerance to moderate pollution levels (*G. minutum*) the rest of the community composition indicates that critical levels of pollution were present before elevated flows occurred (*F. saprophila, E. subminiscula, N. cryptocephala, N. recens, N. capitatoradiata*). Of concern is the presence of *N. veneta* that is found in industrial effluent and *A. exigua* that occurs in industrial and other waste water. It is also able to grow under very low light and can tolerate temperatures of up to 40 °C (Taylor *et al.*, 2007b). Komati sugar mill upstream of this site may be the source of pollution.

The SPI index indicates moderate water quality (13.1), although this falls within the lower ranges of the classification and the diatom based ecological classification indicates low oxygen saturation and alkaline water. The diatom water quality is in a B/C category but the trend for this site is negative as an increase in nutrient loading is expected during low flows and an increase in pollution levels and electrolyte levels.

D3.4.7 EWR 7: Honeybird

Site	Dominant species	Species contribution to sample (%)
EWR 7	Achnanthidium minutissimum	46
	Acnanthidium saprophilum	12
	Cocconeis pediculus	11

EWR 7 is situated in MRU A and WQSU 7. Land-cover is farming (e.g. paw-paws, bananas, sugar cane), sawmill and pole treating in the vicinity and mining upstream. Pollution sources from upstream users include irrigation, urban areas and old gold mining activities. The site is a single thread, straight bedrock dominated channel and sand dominates the bed (Appendix C, this report).

A minutissimum was the dominant species at this site, favouring well oxygenated clean fresh water (Taylor *et al.*, 2007b). *A. minutissimum* is an indicator of natural/anthropogenic disturbances and indicates the presence of diffuse pollutants (Kovács, 2007). According to Ács *et al.*, 2004, *A. minutissimum* indicates low levels of disturbance at this site with 46% dominance. The presence of pollution tolerant species, although in very small numbers, indicates that upstream anthropogenic activities may be impacting slightly on this EWR site and may be the source of slightly elevated concentrations of organically bound nitrogen. This is supported by the presence of *A. saprophilum* which favours organically enriched eutrophic waters (Taylor *et al.*, 2007b). The dominance of *A. minutissima* and *C. pendiculus* as well as the presence of *D. kuetzingii* indicates elevated electrolyte conditions.

Overall the water quality is in a B category with a SPI score of 15.8. There are pollutant tolerant species present although in lower levels, but pollution may be on the increase due to species present that are tolerant to high levels of pollution (e.g. *E. subminuscula*, *G. parvulum*, *G. parvulum*, *f saprophilum*). The trend for this site is stable if present conditions prevail.

D4 RESULTS: SABIE – SAND RIVER SYSTEM

D4.1 SAMPLING SITES

Details of the sampling sites are given in Table D7.

Table D7Diatom sampling sites

Sample	Site	Biyer	Co-oro	dinates	Decourse Unit	Water Quality Sub Unit	
number	Site	River	South	East	Resource Unit		
610	EWR 1	Sabie River	S25 04.424	E30 50.924	MRU A	WQSU2	
614	EWR 2	Sabie River	S25 01.675 E31 03.099 MRU A		MRU A	WQSU3	
612	EWR 3	Sabie River	S24 59.256	E31 17.572	MRU C	WQSU5	
611	EWR 4	Mac Mac River	S25 00.800	E31 00.243	Mac Mac	WQSU 1 (Mac Mac)	
617	EWR 5	Marite River	S25 01.077	E31 07.997	Marite	WQSU 2 (Marite)	
615	EWR 6	Mutlumuvi River	S24 45.352	E31 07.923	Mutlumuvi	WQSU 1 (Mut)	
616	EWR 7	Tlulandziteka River	S24 40.829	E31 05.188	Tlulandziteka	WQSU 2 (Sand)	
613	EWR 8	Sand River	S24 58.045	E31 37.641	MRU B	WQSU 4 (Sand)	

The main land use activities in the different Resource Units are given in Table D8.

Table D1 Main land use activities in the Resource Units

Resource Unit	Land use activities ¹
MRU A	Land-cover is forestry, plantations, irrigation of crops, urban settlements (e.g. Sabie town) and associated activities, including possible return flows from old mines.
MRU C	Conservation (KNP).
Mac Mac	Forestry, including commercial plantations and Venus sawmill.
Marite	Land-cover is extensive urban/rural settlements with associated activities, irrigation of crops, particularly extensive citrus cultivation.
Mutlumuvi	Land-cover is forestry, extensive urban/rural settlements, and subsistence farming.
Tlulandziteka	Land-cover is extensive urban/rural settlements, forestry, subsistence farming and agriculture. Site is downstream of an instream dam.
MRU B	Conservation (KNP).

1 Information obtained from Appendix C, this report.

D4.2 DIATOM ASSEMBLAGE

The diatom abundances of the different EWR sites are given in Table D9.

Table D2 Diatom species assemblage and abundances of samples for each EWR site

Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7	EWR 8
Species	610	614	612	611	617	615	613	615
Achnanthes crassa Hustedt	3				133		3	
Achnanthes lanceolata (Breb.) Grun. ssp. frequentissima Lange-Bertalot		2	2			5	3	4
Achnanthes lanceolata(Breb.) Grunow lanceolata Grunow	12		2	14				
Achnanthes linearis (W.Sm.) Grunow		48			22	1		
Achnanthes minutissima Kutzing v.minutissima Kutzing (Achnanthidium)	61	17	40	105	19	189	32	106
Achnanthes minutissima Kutzing saprophila Kobayasi et Mayama	4	18	4	2	6	4	9	

Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7	EWR 8
Achnanthes standerii Cholnoky	5		4		159			9
Achnanthes subaffinis Cholnoky					26		5	
Amphipleura pellucida Kutzing				1				
Amphora pediculus (Kutzing) Grunow	1			1				18
Amphora veneta Kutzing	1							
Asterionella formosa Hassall	1							
Aulacoseira ambigua (Grun.) Simonsen	1							
Aulacoseira granulata (Ehr.) Simonsen	1			1				
Craticula molestiformis (Hustedt) Lange-Bertalot	3	2		1			1	1
Cocconeis pediculus Ehrenberg	1	17	13	4				
Cocconeis placentula Ehrenberg placentula	7	159	247	13	2	13	89	1
Cocconeis placentula Ehrenberg pseudolineata Geitler					3			
Cocconeis placentula Ehrenberg euglypta (Ehr.) Grunow	2		5	2			1	
Cocconeis placentula Ehrenberg lineata (Ehr.) Van					1		4	
Heurck Craticula buderi (Hustedt) Lange-Bertalot						1	-	
Craticula vivnedigenda Lange-Bertalot		1				2		
Ciclotella ocellata Pantocsek		1				2		3
Cyclotella radiosa (Grupow) Lemmermann								3
Cymbella affinis Kutzing affinis		5			2	1		4
Cymbella minuta Hilse ex Rabenborst (Encyonema)		5	٩		2	4		
Cymbella fumida (Brobicson) Van Hourek	10	2	1	6	2	1		
Cymbella turaidula Grunow 1875 in A.Schmidt & al.	10	2	1	0	2	1		
turgidula		2	6		2			
Diatoma vulgaris Bory 1824	21			16				
Diploneis puella (Schumann) Cleve				1				
Encyonema minutum (Hilse in Rabh.) D.G. Mann	1							
Encyonopsis leel Krammer sinensis Metzeltin & Krammer	1	32	8	1	5		9	
Encyonopsis microcephala (Grunow) Krammer							11	4
Eolimna minima (Grunow) Lange-Bertalot	3	15	24	10	1	13	14	16
Eolimna subminuscula (Manguin) Moser Lange-Bertalot	1	1	2					1
Epithemia adnata (Kutzing) Brebisson						7	28	
Epithemia sorex Kutzing								24
Eunotia minor (Kutzing) Grunow in Van Heurck	2							2
Fragilaria biceps (Kutzing) Lange-Bertalot	8			1				
Fragilaria brevistriata Grunow (Pseudostaurosira)	1							
Fragilaria capucina Desmazieres capucina	6							
Fragilaria capucina Desmazieres				9				
var.vaucheriae(Kutzing)Lange-Bertalot				Ű				4
Fragilaria elilplica Schumann (Staurosira)			1					4
Fragilaria ulna (Nitzsch) Lange-Bertalot ulna	2							
Fragilaria ulna (Nitzsch.) Lange-Bertalot ulna Fragilaria ulna (Nitzsch.)Lange-Bertalot acus (Kutz.)	2							
Lange-Bertalot			1	2				
Gomphonema acuminatum Ehrenberg	1	2		1				9
Gomphonema angustatum (Kutzing) Rabenhorst		3		8			3	1
Gomphonema clavatum Ehr.						4	1	
Gomphonema insigne Gregory						4		
Gomphonema lagenula Kützing	1							
Gomphonema minutum (Ag.) Agardh f. minutum	22	6		20		9		
Gomphonema parvulius Lange-Bertalot & Reichardt						6		
parvulum parvulum (Kulzing) Kulzing parvulum f.	61			64		31		1
Gomphonema parvulum parvulum f.saprophilum Lange- Bert.&Reichardt						21	2	
Gomphonema pumilum (Grunow) Reichardt & Lange- Bertalot	8			2		15	4	
Gomphonema species	8			1	3	29	20	

Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7	EWR 8
Gomphonema truncatum Ehr.	1							
Gomphonema venusta Passy. Kociolek & Lowe		8	2	2	4	22	85	
Luticola mutica (Kützing) D.G. Mann							1	
Mastogloia smithii Thwaites								12
Mayamaea atomus (Kutzing) Lange-Bertalot							2	
Mayamaea atomuspermitis (Hustedt) Lange-Bertalot	2						1	
Melosira varians Agardh		1		1				4
Navicula antonii Lange-Bertalot	7			2				29
Navicula arvensis Hustedt				1			1	
Navicula capitata Ehrenberg (=Hippodonta)							6	
Navicula capitatoradiata Germain		5	6	5				13
Navicula cryptocephala Kutzing	4	15	1	2	3	1	2	
Navicula cryptotenella Lange-Bertalot			1		4			11
Navicula dicephala Ehrenberg				1				
Navicula erifuga Lange-Bertalot								2
Navicula gregaria Donkin		8					2	5
Navicula heimansioides Lange-Bertalot					2			
Navicula longicephala Hustedt var.longicephala								8
Navicula microcephala Grunow							5	
Navicula molestiformis Hustedt				1				
Navicula radiosa Kützing					1	2		
Navicula recens (Lange-Bertalot) Lange-Bertalot	4							
Navicula reichardtiana Lange-Bertalot reichardtiana		8						11
Navicula schroeteri Meister var. schroeteri		1		2				9
Navicula schroeteri Meister symmetrica (Patrick) Lange-	4							
Bertalot	•			6			2	
		4		0			2	
Navicula tripunctata (O.F.Muller) Bory		2		1				
Navicula vandamii Schoeman & Archibaid vandamii		2		1				2
Navicula viridula (Kutz.) Ebr. rostollata (Kutz.) Clavo		3		1				3
Navicula viridula (Kutzing) Ehrophorg	2			4				
	2	5						
Nitzachia zaioularia Kutzing) W M Smith		5					5	
						2	5	1
						2		2
	50		4	60		4	2	47
	29		1	60		4	3	17
Nitzschia elegantula Grunow	1					1	10	2
Nitzschie fentiece Crunewin Cleve et Mäller	1			1			1	3
	3		0	5				3
Nitzschia irustulum (Kutzing) Gruhow val. nustulum	5		9	5			2	12
Nitzschia internissa Cholnoky	5						3	10
Nitzschia liebetrutnii Rabennorst var liebetrutnii	4			1				12
Nitzschia linearis (Agardh) W.M.Smith	4			1				
var.subtilis(Grunow) Hustedt	2							
Nitzschia palea (Kutzing) W.Smith	6			5		1		
Nitzschia paleacea (Grunow) Grunow in van Heurck						2		
Nitzschia paleaeformis Hustedt								7
Nitzschia pusilla (Kutzing) Grunow							8	
Nitzschia sigma (Kutzing) W.M.Smith								2
Nitzschia species	9			3			8	
Nitzschia supralitorea Lange-Bertalot				11				
Nitzschia valdecostata Lange-Bertalot et Simonsen			4					17
Placoneis dicephala (W.Smith) Mereschkowsky		6						

Species	EWR 1	EWR 2	EWR 3	EWR 4	EWR 5	EWR 6	EWR 7	EWR 8
Reimeria uniseriata Sala Guerrero & Ferrario			5					
Rhoicosphenia curvata (Kutzing) Grunow		4						
Rhopalodia gibba (Ehr.) O.Muller var.gibba						2		
Sellaphora pupula (Kutzing) Mereschkowksy	11			2				1
Sellaphora seminulum (Grunow) D.G. Mann	3		7				1	8
Simonsenia delognei Lange-Bertalot						1		
Stauroneis gracilior (Rabenhorst) Reichardt		1						
Surirella angusta Kutzing	1			1		2		
Tabularia fasciculata (Agardh)Williams et Round	8							
Thalassiosira pseudonana Hasle et Heimdal							7	
Tryblionella apiculata Gregory	1			1				5
Tryblionella gracilis W. Smith								1
Total Count	400	400	405	404	400	400	392	406

Shaded blocks indicate dominant species per sample

D4.3 SPI SCORES

The European numerical diatom index, the Specific Pollution sensitivity Index (SPI) was used to interpret results. De la Rey *et al.*, 2004, concluded that the SPI reflects certain elements of water quality with a high degree of accuracy due to the broad species base of the SPI.

The SPI for the samples is given in Table D10 and the interpretation of the SPI scores is given in Table D11.

EWR site	Site name	River	No species	Specific Pollution sensitivity Index (SPI)	Class	Category
EWR 1	Upper Sabie	Sabie	51	13.1	Moderate quality	B/C
EWR 2	Sabie Aan de Vliet	Sabie	31	15.3	Good quality	В
EWR 3	Kidney	Sabie	24	14.5	Good quality	В
EWR 4	MacMac	MacMac	46	14.0	Good quality	В
EWR 5	Marite	Marite	18	19.4	High quality	А
EWR 6	Mutlumuvi	Mutlumuvi	31	15.6	Good quality	В
EWR 7	Tlulandziteka	Tlulandziteka	37	12.8	Moderate quality	B/C
EWR 8	Upper Sand	Sand	51	13.1	Moderate quality	B/C

Table D3SPI scores for the different samples

Table D4 Generic diatom based ecological classification

Diatom based ecological classification						
Site	рН	Salinity	Organic nitrogen	Oxygen levels	Pollution levels	Trophic status
EWR 1	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Fairly high (>75% saturation)	Moderately polluted	Eutrophic
EWR 2	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Slightly polluted	Eutrophic
EWR 3	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Slightly to moderately polluted	Eutrophic

Diatom based ecological classification						
Site	рН	Salinity	Organic nitrogen	Oxygen levels	Pollution levels	Trophic status
EWR 4	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly to moderately polluted	Eutrophic
EWR 5	Circumneutral	Fresh (<.2% salinity)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly polluted	Oligo - Eutrophic
EWR 6	Circumneutral	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly polluted	Oligo - Eutrophic
EWR 7	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Low saturation (>30%)	Moderately polluted	Eutrophic
EWR 8	Alkaline	Fresh brackish (Cond <139 mS/m)	Slightly elevated concentrations of organically bound nitrogen.	Continuously high saturation (~100%)	Slightly to moderately polluted	Eutrophic

D4.4 DISCUSSION

The dominant species in the diatom samples for the EWR sites are given and the diatom assemblages are discussed. Note: Species contributing 5% or more to the total count were classified as dominant species.

D4.4.1 EWR 1: Upper Sabie

Site	Dominant species	Species contribution to sample (%)
	Achnanthidium minutissimum	15
EWR 1	Gomphonema parvulum	15
	Nitzschia dissipata	15
	Gomphonema minutum	5
	Diatoma vulgaris	5

EWR 1 lies within MRU A and WQSU 2. Land-cover includes forestry, plantations, irrigation of crops, urban settlements (e.g. Sabie town) and associated activities, including possible return flows from old mines. This site is a single thread straight channel, with sand dominating the bed (Appendix C, this report).

A. *minutissimum* was the dominant species in this sample and favours well oxygenated clean fresh water (Taylor *et al.*, 2007b). *A. minutissimum* is an indicator of natural/anthropogenic disturbances and indicates the presence of diffuse pollutants (Kovács, 2007). *D. vulgaris* is generally found in mesotrophic to eutrophic waters with average electrolyte content and prefers alkaline conditions (Taylor *et al.*, 2007b and Fore and Grafe, 2002). The presence of species tolerant to moderate to heavy pollution (*G. minutum*, *G. pumilum* and *G. parvulum*), indicates that upstream anthropogenic activities may be impacting on this EWR site and may be the source of slightly elevated concentrations of organically bound nitrogen. The presence of *N. dissipata* in high abundance indicates calcium based salinity (Taylor, *pers comm.*).

The SPI indicates good water quality (13.1) although this falls within the lower ranges of the classification. Overall the diatom water quality is in a B/C category. The trend is stable and the community indicates increased salinity and eutrophication.

D4.4.2 EWR 2: Aan de Vliet

Site	Dominant species	Species contribution to sample (%)
EWR 2	Cocconeis pediculus	40
	Achnanthes linearis	12
	Encyonopsis leei var. sinensis	8
	Diatoma vulgaris	5

EWR 2 lies within MRU A and WQSU 3. Land-cover is agriculture (irrigation), forestry, rural and urban settlements (e.g. Hazyview) and associated activities. The site is a single thread, sinuous bedrock dominated channel (Appendix C, this report).

The dominant *C. pediculus* favours moderate to high electrolyte, brackish waters (Taylor *et al.*, 2007b). The presence of *A. linearis* and *E. leei sinensis* indicates a systematic increase in acidic conditions.

The SPI score for this site is 15.3 (Good water quality) and current conditions are alkaline eutrophic waters with low oxygen saturation. It is expected that the water quality will deteriorate as the effect of upstream land use on this site includes industrial effluent (presence of *N. veneta*) and very high levels of pollution (*N. gregaria, N. capitatoradiata, N. reichardtiana, and E. minima*). Community composition indicates increased eutrophication and a general increase in electrolyte content if conditions persist.

D4.4.3 EWR 3: Kidney

Site	Dominant species	Species contribution to sample (%)
	Cocconeis placentula	60
EWR 3	Achnanthidium minutissimum	10
	Eolimna minima	5

EWR 3 lies within MRU C and WQSU 5. This site falls within the Kruger National Park. The site is a multi thread, straight channel, bedrock dominated with a sand bed (Appendix C, this report).

The dominant *C. placentula* has a broad ecological range and is found in most running waters except where nutrients are low or acidic conditions prevail (Taylor *et al.*, 2007b). It is tolerant of moderate organic pollution and also extends into brackish waters (Kelly *et al.*, 2001). According to Fore and Grafe, 2002, *C. placentula* and *C. pediculus* prefer alkaline eutrophic conditions. The presence of *A. minutissimum* indicates oxygenated, fresh waters (Taylor *et al.*, 2007b). This species also indicates indicate the presence of diffuse pollutants. The presence of pollutant tolerant species e.g. *E. minima*, *N. frustulum*, *N. capitatoradiata* and *S. seminulum* indicate pollution problems and the Mkuhlu township upstream from this site may be the main source of these pollutants. This is supported by the presence of A. saprophilum which indicates enrichment and favours eutrophic water (Taylor *et al.*, 2007b).

The SPI indicates good water quality (14.5), although this falls within the lower ranges of the classification and the diatom based ecological classification indicates low oxygen saturation and alkaline conditions. Overall the diatom water quality is in a B category but the high flows (1.3 m³/s on day of sampling) may have had a dilution effect as there are species present that are very pollution tolerant and indicators of eutrophic conditions (*A. saprophilum*). The presence of *N. valdecostata* is an indication of elevated bicarbonates and sulphides at this site and this along with the nutrient load from anthropogenic activities may be the source of low oxygen saturation. The trend for this site is negative, in terms of water quality, as the observed flow has had a dilution effect. Present diatoms indicate increased eutrophication and increased salinity at lower flows. The sample indicated that the valves of the *Cocconeis* genus were deformed which could be an indication of metal contamination.

D4.4.4 EWR 4: Mac Mac

Site	Dominant Species	Species contribution to sample (%)
	Achnanthidium minutissimum	26
EWR 4	Gomphonema parvulum	16
	Nitzschia dissipata	15
	Gomphonema minutum	5

EWR 4 lies within MRU Mac Mac and WQSU 1. Forestry, including commercial plantations and Venus sawmill. The site is a single thread, straight alluvial channel and cobble dominates the bed (Appendix C, this report).

The dominant species at this site indicates fast flowing, well oxygenated water. *G. parvulum* and *G. minutum* are very pollution tolerant and its dominance indicates increased pollution levels which may be caused by the sawmill or graskop STW upstream of the site. The presence of *N. dissipata* in high abundance indicates calcium based salinity (Taylor, *pers comm.*) and it seems the site is impacted by the upstream activities due to species present with a preference for moderate to high electrolyte waters. The diatom community shows traces of the onset of severe water quality impacts with the presence of *E. minima*, *N. veneta*, *N. tenelloides*, *N. frustulum* and *N. palea*).

The SPI index indicates moderate water quality (14), with well oxygenated slightly to moderate polluted eutrophic water. The general trend for this site is negative under these low flow conditions due to increased pollution and eutrophication. It is however expected that with higher flows the water quality could improve due to dilution of pollutants.

D4.4.5 EWR 5: Marite

Site	Dominant species	Species contribution to sample (%)
	Achnanthes standerii	40
EWR 5	Achnanthes crassa	33
	Achnanthes subaffinis	6
	Achnanthes linearis	6
	Achnanthidium minutissimum	5

EWR 5 is situated within MRU Marite and WQSU 2. Land-cover is extensive urban/rural settlements with associated activities, irrigation of crops, particularly extensive citrus cultivation. The site is a single thread, straight channel and sand dominates the bed (Appendix C, this report).

EWR 5 is dominated by the endemic *A. standerii* which requires high water quality as well as oxygenated water (Taylor *et al.*, 2007b). This species is an indicator of circumneutral to slightly acidic water. All dominants present indicate clean, flowing well oxygenated water. The database programme OMNIDA ver. 3 does not include SA endemics in index calculations and this may influence the pH variable to some extent (slightly more acidic).

Due to the elevated flows (0.5 m^3/s) present on the day of sampling this diatom community may not be a true reflection of water quality. Although *A. minutissimum* indicates anthropogenic disturbances and the presence of diffuse pollutants (upstream citrus farming), the community does not show serious impacts at the moment.

The SPI indicates high quality (19.4), well oxygenated circumneutral water. It is recommended that another sample is taken at lower flows to get a true reflection of community composition and possible water quality related impacts. The trend for this site is stable. Although the current conditions cannot prevail there is no indication at this moment that there are serious water quality related impacts.

D4.4.6 EWR 6: Mutlumuvi

Site	Dominant species	Species contribution to sample (%)
	Achnanthidium minutissimum	47
EWR 6	Gomphonema parvulum	7
	Gomphonema venusta	6
	Gomphonema parvulum var.parvulum f.saprophilum	5

EWR 6 is situated within MRU Mutlumuvi within WQSU 1. Land-cover is forestry, extensive urban/rural settlements, and subsistence farming. The site is a multi-thread, sinuous bedrock dominated channel and sand dominates the bed (Appendix C, this report).

A. minutissima was the dominant species in this sample and favours well oxygenated clean fresh water (Taylor *et al.*, 2007b). *A. minutissima* is an indicator of natural/anthropogenic disturbances and indicates the presence of diffuse pollutants (Kovács, 2007). According to Ács *et al.* (2004), *A. minutissimum* indicates low levels of disturbance at this site with 47% dominance. The presence of pollution tolerant species, although in very small numbers, indicates that upstream anthropogenic activities may be impacting slightly on this EWR site and may be the source of slightly elevated concentrations of organically bound nitrogen.

The dominance of G. parvulum and G. *parvulum parvulum f. saprophilum* indicates pollution input from upstream anthropogenic activities as these species are extremely pollution tolerant. As the river had very little to no flow on the day of sampling elevated temperatures could have occurred and is substantiated by the presence of *E. adnata* as this species occurs in waters with elevated temperatures and nutrient load and *R. gibba* which occurs in standing water (Taylor *et al.*, 2007b).

The SPI index indicates moderate water quality (15.6), with well oxygenated circumneutral waters. The diatom water quality is in a B category but the trend for this site is stable to positive as an increase in flows will have a dilution effect on nutrient loading and possible electrolyte increases due to upstream anthropogenic activities.

D4.4.7 EWR 7: Tlulandziteka

Site	Dominant Species	Species contribution to sample (%)
EWR 7	Cocconeis pediculus	22
	Gomphonema venusta	22
	Achnanthidium minutissimum	8
	Epithemia adnata	7

EWR 7 is situated in MRU A and WQSU 7. Land cover is extensive urban/rural settlements, forestry, subsistence farming and agriculture. Site is downstream of an instream dam. The site is a single thread, sinuous bedrock dominated channel and sand dominates the bed (Appendix C, this report).

The dominant *C. pediculus* has a broad ecological range and is found in most running waters except where nutrients are low or acidic conditions prevail (Taylor *et al.*, 2007b). It is tolerant of moderate organic pollution and also extends into brackish waters (Kelly *et al.*, 2001). According to Fore and Grafe (2002), *C. pediculus* prefer alkaline eutrophic conditions. *A. minutissima*, according to Ács *et al.* (2004), indicates low levels of disturbance at this site with 22% dominance. The presence of *E. adnata* indicates elevated temperatures and nutrient load. The presence of pollution tolerant species, although in very small numbers, indicates that upstream anthropogenic activities may be impacting moderately on this EWR site and may be the source of slightly elevated concentrations of organically bound nitrogen. This is supported by the presence of *N. capitata*, *N. gregaria*, *N. acicularis* and *N. irremissa*.

Overall the water quality is in a B/C category with a SPI score of 12.8 although this falls within the lower ranges of the classification and the diatom based ecological classification indicates low oxygen saturation and alkaline conditions. There are pollutant tolerant species present although in lower levels, but pollution may be on the increase due to species present that are tolerant to high levels of pollution. The trend for this site is stable if present conditions prevail although it is foreseen that water quality will deteriorate rapidly under reduced flow.

D4.4.8 EWR 8: Sand

Site	Dominant Species	Species contribution to sample (%)
	Achnanthidium minutissimum	26
EWR 8	Navicula antonii	7
	Epithemia sorex	6

EWR 8 is situated in MRU B and WQSU 4. This site falls within the Kruger National Park. The site is a single thread, sinuous channel, bedrock dominated with a sand bed (Appendix C, this report).

As with EWR 6 the dominant species is *A. minutissimum* and indicates well oxygenated waters and point source pollutants. The presence of *N. antonii* indicates that the upstream anthropogenic

impacts are affecting this site with regard to nutrient load and pollutants. *E. sorex* favours waters with moderate to high electrolyte content.

Bicarbonates and sulphides are a factor at this site due to the presence of the *N. valdecostata* and the presence of *N. dissipata* is a good indicator of hard water (calcium based salinity) and favours alkaline conditions (Taylor, *pers comm.*). It seems that upstream anthropogenic activities (army base and abattoir) are impacting on this site.

The SPI score for this site is 13.2 (B category) although this falls within the lower ranges of the categorization. It seems that the trend for this site is negative as the majority of species present at this site is tolerant to high and extreme levels of pollution. Enrichment will increase in the long run and oxygen will be depleted from the system, unless high flow dilutes the water quality related impacts at this site.

D5 REFERENCES

Ács, E., Szabó, Tóth, B. and Kiss K.T. 2004. Investigation of Benthic Algal communities, especially diatoms of some Hungarian streams in connection with reference conditions of the Water Framework Directives. *Acta Botanica Hungarica 46* (3 - 4), pp. 255 – 277, 2004.

AFNOR. 2000. Norme Française NF T 90 – 354. Détermination de l'Indice Biologique Diatomées IBD. Association Française de Normalisation, 63 pp.

Battarbee, R.W. 1986. Diatom Analysis. In Berglund BE (ed) Handbook of Holocene Paleoecology and Paleohydrology. John Wiley & Sons Ltd. Chichester. Great Briton. pp 527-570.

Bate, G.C., Adams, J.B. & van Der Molen, J.S. 2002. Diatoms as indicators of water quality in South African river systems. WRC Report No 814/1/02. Water Research Commission. Pretoria.

Cattaneo, A., Couillard, Y., Wunsam, S., and Courcelles, M. 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault Québec, *Canada. Journal of Paleolimnology* **32**: 163 - 175.

CEMAGREF 1982 Etude des methodes biologiques quantitatives d'appreciation de la qualite des eaux. Rapport Division Qualité des Eaux Lyon - Agence Financiere de Bassin Rhône-Méditerranée- Corse. Pierre-Benite.

Comité Européen de Normalisation (CEN) 2003. Water quality – Guidance standard for the routine sampling and pre-treatment of benthic diatoms from rivers. European Standard. EN 13946:2003.

Diatoms for Assessing River Ecological Status (DARES) 2004. Sampling protocol. Version 1. <u>http://craticula.ncl.ac.uk/dares/methods.htm</u>

De la Rey, P.A., Taylor, J.C., Laas, A., Van Rensburg, L. & Vosloo, A 2004. Determining the possible application value of diatoms as indicators of general water quality: A comparison with SASS 5. *Water SA* **30**: 325-332.

Dixit, S.S., Smol, J.P., Kingston, J.C. & Charles, D.F. 1992. Diatoms: Powerful indicators of environmental change. *Environmental Science and Technology* **26**: 23–33.

Department of Water Affairs and Forestry (DWAF) 2007. Resource Directed Measures: Reserve Determination studies for selected surface water, groundwater, estuaries and wetlands in the Outeniqua (Knysna and Swartvlei) catchment. Delineation Report. Prepared by Coastal and Environmental Services. Report no. RDM/ K40K50/00/ CON/0207

Fore, L.S., and Grafe, C. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). *Freshwater Biology* **47**: 2015 – 2037.

Kelly, M.G., Cazaubon, A., Coring, E., Dell'uomo, A., Ector, L., Goldsmith, B., Guasch, H., Hürlimann, J., Jarlman, A., Kawecka, B., Kwandrans, J., Laugaste, R., Lindstrøm, E.A., Leitao, M., Marvan, P., Padisak, J., Pipp, E., Prygiel, J., Rott, E., Sabater, S., Van Dam, H., and Vizinet, J. 1998. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. *Journal of Applied Phycology* **10**: 215 - 224.

Kelly, M.G., Adams, C., Graves, A.C., Jamieson, J., Krokowski, J., Lycett, E.B., Murray-Bligh, J., Pritchard, S., and Wilkins, C. 2001. The Trophic Diatom Index: A User's Manual. Revised edition. R&D Technical Report E2/TR2.

Cholnoky, B.J. 1968. Die Ökologie der Diatomeen in Binnengewässern. J Cramer, Lehre.

Krammer, K. and Lange-Bertalot, H. 1986 - 1991. Bacillario-phyceae. Süßwasserflora von Mitteleuropa 2 (1-4). Spektrum Akademischer Verlag, Heidelberg. Berlin.

Lecointe, C., Coste, M. and Prygiel, J. 1993. "Omnidia": Software for taxonomy, calculation of diatom indices and inventories management. *Hydrobiologia* **269/270**: 509 - 513.

Leira, M. and Sabater, S. 2005. Diatom assemblages distribution in Catalan rivers, NE Spain, in relation to chemical and physiographical factors. Water Research **39**: 73 - 82

Prygiel, J., Carpentier, P., Almeida, S., Coste, M., Druart, J.C., Ector, L., Guillard, D., Honoré, M.A., Iserentant, R., Ledeganck, P., Lalanne-Cassou, C., Lesnaik, C., Mercier, I., Moncout, P., Nazart, M., Nouchet, N., Peres, F., Peeters, V., Rimet, F., Rumeau, A., Sabater, S., Straub, F., Torrisi, M., Tudesque, L., Van der Vijver, B., Vidal, H., Vizinet, J. and Zydek, N. 2002. Determination of the biological diatom index (IBD NF T 90-354): results of an inter-comparison exercise. *Journal of Applied Phycology* **14**: 27-39.

River Health Programme 2005. State-of-Rivers Report: Monitoring and Managing the Ecological State of Rivers in the Crocodile (West) Marico Water Management Area. Department of Environmental Affairs and Tourism, Pretoria.

Rott, E. 1991. Methodological aspects and perspectives in the use of periphyton for monitoring and protecting rivers. In: Whitton, B.A., Rott, E. & Friedrich, G. editors. Use of Algae for Monitoring Rivers. E. Rott, Institüt für Botanik, Univ. Innsbruk. pp 9 - 16.

Round, F.E. 1993. A Review and Methods for the Use of Epilithic Diatoms for Detecting and Monitoring Changes in River Water Quality. Methods for the examination of water and associated materials. HMSO Publications, London.

Schoeman, F.R. 1973. A systematical and ecological study of the diatom flora of Lesotho with special reference to water quality. V&R Printers, Pretoria, South Africa.

Taylor, .J.C. 2004. The Application of Diatom-Based Pollution Indices in The Vaal Catchment. Unpublished M.Sc. thesis, North-West University, Potchefstroom Campus, Potchefstroom.

Taylor, J.C., Harding, W.R., Archibald, C.G.M. & van Rensburg, L. 2005a. Diatoms as indicators of water quality in the Jukskei-Crocodile River system in 1956 and 1957, a re-analysis of diatom count data generated by BJ Cholnoky. *Water SA* **31** (2): 327 - 346.

Taylor, J.C., De la Rey, P.A .and Van Rensburg, L. 2005b. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. *African Journal of Aquatic Science*, **30(1)**: 65 – 75.

Taylor, J.C., Harding, W.R. and Archibald, C.G.M. 2007a. A methods manual for the collection, preparation and analysis of diatom samples. Water Research Commission Report TT281/07. Water Research Commission. Pretoria.

Taylor, J.C., Harding, W.R. and Archibald, C.G.M. 2007b. An illustrated guide to some common diatom species from South Africa. Water Research Commission Report TT282/07. Water Research Commission. Pretoria.

Tilman, D., Kilham, S.S., & Kilham, P. 1982. Phytoplankton community ecology: The role of limiting nutrients. *Annual Review of Ecology and Systematics* **13**: 349 – 372.

APPENDIX E: GEOMORPHOLOGY

M Rountree, Fluvius Environmental Consultants
E1 EWR 1: VALEYSPRUIT (CROCODILE RIVER)

E1.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1956, 1965, 1997).	
Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the	3
Ecological Reserve of the Crocodile River catchment; 2002).	
Site survey information.	

E1.2 REFERENCE CONDITIONS

E1.3 PRESENT ECOLOGICAL STATE

E1.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.8	
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	Morphology representative, and impacts at site
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	3.5	(grazing, roads) representative of the eaterment.
Morphological Cues					Allunial (magndaring floodplain) site with bodrook
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	5.0	control downstream. Levees and cut off meanders are
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	3.0	present. However not easy to relate these cues to
If these are present, are the terraces paired?	Yes	Don't know	No	3.0	nows on a cross section
Sediment Transport Modelling				4.0	This is predominantly a hedload system and PBMT
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	4.0	modelling is therefore appropriate and has already beed conducted in a previous study. Will use these
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	results for this study.
OVERALL SCORE:				3.8	

Site description			
Morphology of the site	No good quality Google Earth images ox-bow features on the floodplain cut-off meanders. An oxbow lake analysis indicates that this predate photographs due to the large scale to have been straightened upstra associated with agricultural activity arisen from the roads.	gery was available. The site is a typical m . The floodplain consists of cut banks, a is evident on the eastern flank of the flood as 1956. No directional changes could be of the photographs and the narrow chan eam of the site between 1956 and 196 ties which are evident at this time. Othe	neandering floodplain with advancing point bars and dplain. Aerial photograph e observed from the aerial nel. The channel appears 64. These changes are er localised impacts have
PES	B (85.3%)	Confidence	3

E1.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Channel incision/confinement and straightening.	Land-use impacts from agriculture and roads.	NF	3

E1.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The current impacts are relatively small and the present state of the system is stable under these conditions.	3

E1.5 REC: A/B

PES	REC	Comments	Conf
В	В	Maintain the current EC.	3

E1.6 AEC: B/C

PES	AEC	Comments	Conf
В	С	A reduction in the moderate floods. This would result in less frequent and shorter duration overtopping floods, which would result in partial desiccation of the floodplains and associated wetlands.	2

E2 EWR 2: GOEDEHOOP (CROCODILE RIVER)

E2.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1956, 1964, 1975, 1985). Hydrology records. Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the Ecological Reserve of the Crocodile River catchment; 2002). Site survey information.	3

E2.2 REFERENCE CONDITIONS

E2.3 PRESENT ECOLOGICAL STATE

E2.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.3	
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	Morphology representative, and impacts at site (grazing, roads, incision) generally representative of
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	2.5	the catchment.
Morphological Cues				3.3	Alluvial (meandering floodplain) site with bedrock
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	5.0	control downstream. Levees and cut off meanders are
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.0	present. However not easy to relate these cues to
If these are present, are the terraces paired?	Yes	Don't know	No	3.0	nows on a closs section
Sediment Transport Modelling				4.0	This is predominantly a hedload system and PBMT
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	4.0	modelling is therefore appropriate and has already
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	results for this study.
OVERALL SCORE:				3.5	

E2.3.2 PES: Causes and sources

PES	Causes	Sources	F/NF	Conf
В	Channel incision/confinement and straightening.	Land use impacts from agriculture and roads.	NF	3
	Some slight changes to sediment supply.	Land use activities (agriculture).		_

E2.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The current impacts are relatively small and the present state of the system is stable under these conditions.	2.5

E2.5 REC: B

PES	REC	Comments	Conf
В	В	Maintain the current EC.	3

E2.6 AEC: C

PES	AEC	Comments	Conf
В	С	It would be expected that there would be a reduction in the moderate floods. This would result in less frequent and shorter duration overtopping floods, which would result in partial desiccation of the floodplains and associated wetlands.	2

E3 EWR 3: POPLAR CREEK (CROCODILE RIVER)

E3.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1956, 1964, 1975, 1985).	
Hydrology records.	
Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the	3
Ecological Reserve of the Crocodile River catchment; 2002).	
Site survey information.	

E3.2 REFERENCE CONDITIONS

E3.3 PRESENT ECOLOGICAL STATE

E3.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.8	Morphology representative, and impacts at site (cut
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	banks, incision and erosion) are generally
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	3.5	slightly better than average
Morphological Cues					
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	4.0	Alluvial with limited bedrock and boulders present
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	3.5	Narrow floodplain and terraces are present.
If these are present, are the terraces paired?	Yes	Don't know	No	3.5	
Sediment Transport Modelling				4.0	This is predominantly a hedload system and PBMT
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	4.0	modelling is therefore appropriate and has already beed conducted in a previous study. Will use these
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	results for this study.
OVERALL SCORE:	OVERALL SCORE:				

E3.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Channel incision – cut banks on both banks.	Kwena Dam upstream is the source of reduced floods, elevated low and base flows.	F	3.5

E3.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Slow negative	D	5 years	Continued altered flow releases will erode banks, and reduced flooding is desiccating the upper terraces/floodplain.	2.5

E3.5 REC: B

PES	REC	Comments	Conf
С	С	It is not possible to improve the condition of the geomorphology. Although the loss of the moderate floods is a problem, due to the clean water being released from Kwena Dam the reinstatement of these large flows (from the dam) would actually increase the rate of erosion and channel incision in this reach.	3

E3.6 AEC: C/D

PES	AEC	Comments	Conf
С	С	There is unlikely to be any adjustment to the EC of the geomorphology.	N/A

E4 EWR 4: KANYAMAZANE (CROCODILE RIVER)

E4.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1936, 1959, 1970, 1985, 1997). Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the Ecological Reserve of the Crocodile River catchment; 2002). Hydrology records. Site survey information.	3

E4.2 REFERENCE CONDITIONS

E4.3 PRESENT ECOLOGICAL STATE

E4.3.1 Site suitability

This provides an assessment of the suitability of the						
	SCORES:			Notes		
	5	2	1	SCORE		
Representivity of the site for the reach				3.8		
How well does the morphology of the site represent that	Very well	Don't know	Poorly		Morphology representative, and impacts at site	
of the reach?	Very Weir	Dont know	1 oony	4.0	(grazing, limited wood harvesting) are generally	
To what extent is the condition of the site representative	Representative	Don't know	Very different		representative of the catchment.	
of the general condition of the reach?	Representative	DOITT KHOW	very different	3.5		
Morphological Cues				3.0		
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	3.5	Alluvial with large bedrock boulders are present.	
Are there good morphological clues that can be related	Very good	Don't know	Bad		Extensive terraces are present on one bank; other	
to flood levels?				3.5	bank is highly disturbed.	
If these are present, are the terraces paired?	Yes	Don't know	No	2.0		
Sediment Transport Modelling				4.0	This is predominantly a hedload system and PBMT	
Is the river a bedload dominated system (i.e. is potential	Voc	Don't know	No		modelling is therefore appropriate and has already	
bed material tranpsort modelling suitable)	165	DOITT KHOW	JW INO	NU	4.0	beed conducted in a previous study. Will use these
Is potential bed material transport modelling going to be	Vec	Don't know	No		results for this study	
undertaken at this site?	185	DOLLENION	140	4.0	roomo for the olday.	
OVERALL SCORE:						

E4.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
D/C	Reduced sediment transport capacity.	Reduced flood flows from the Kwena Dam and abstraction from Nelspruit.	F	2
B/C	Increased sediment supply.	Agriculture and some informal settlement areas.	NF	3

E4.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C		In the medium term, current scenarios would be unlikely to cause a change in the Geomorphology EC.	2.5

E4.5 REC: B

PES	REC	Comments	Conf
B/C	В	More effective scouring of sediment resulting in an improved EC.	3

E4.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	С	More rapid sedimentation of the pools and active channels.	2.5

E5 EWR 5: MALALANE (CROCODILE RIVER)

E5.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1936, 1959, 1970, 1984, 1997). Hydrology records. Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the Ecological Reserve of the Crocodile River catchment; 2002). Site survey information.	3

E5.2 REFERENCE CONDITIONS

E5.3 PRESENT ECOLOGICAL STATE

E5.3.1 Site suitability

This provides an assessment of the suitability of the					
	SCORES:				Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.8	Morphology representative, and impacts at site (bank
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	disturbance outside KNP) are generally representative
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	3.5	this site
Morphological Cues				2.2	
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	3.5	Macro-channel with alluvial dominated active channel
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.0	No clear terraces are present.
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	
Sediment Transport Modelling				4.3	This is a hadland system and PRMT modelling is
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	5.0	therefore appropriate and has already beed conducted
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	study.
OVERALL SCORE:					

Site description	EWR 5 is classified as an alluvi The channel consists of an ad alluvial, with sand dominating conditions. The channel morp lateral bars, in-channel bencher reeds) play an important role in the sedimentation processes in	al braided channel type and is repre- tive channel inset into a wider ma the bed. The bed is mobile, hology is currently characterised b s and terraces. Riparian and in-cl n stabilizing the channel banks, and the active channel.	esentative of the macro-reach. acro-channel. The channel is even under the lowest flow y vegetated mid-channel bar, hannel vegetation (particularly d have an important effect on				
Morphology of the site	The current state of the river is markedly different from the reference state – reduced flows and increased sediment loads from the upstream catchment has caused a smaller active channel to develop - the morphology is now represented by an active channel inset into a wider macro-channel. Subsequent encroachment of vegetation has allowed for the development of vegetated mid-channel bars, lateral bars and in-channel benches inside the former larger channel. The now smaller inset channel meanders between these increasingly vegetated, stabilised sedimentary bars on the macro-channel floor. The macro channel floor is dominated by sand, with limited bedrock exposure/influence.						
PES	C/D (60.1%)	Confidence	3.5				

E5.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
C/D	Reduced sediment transport capacity (leading to increased deposition and vegetation encroachment).	Reduced flood flows from upstream dams and very reduced/regulated low flows, abstraction from Nelspruit and large irrigation abstractions.	F	a
	Increased stabilization and vegetation of banks and bars.	Altered hydrological regime.		5
	Increased sediment supply.	Erosion from agricultural and informal settlement areas.	NF	

E5.4 TREND

PES	Trend	Trend PES	Time	Reasons	
C/D	Negative	D	5 years	The aerial photographic record demonstrates a strong directional change from a wide, dynamic channel to a much smaller, narrower active channel. The bars and banks have become more vegetated and stabilised.	3

E5.5 REC: B

PES	REC	Comments	Conf
C/D	С	Improved low flow conditions would slightly improve the stabilisation and deepening of the channel, and result in a small increase in the active channel and a small reduction in the extent of bars.	3

E5.6 AEC: D

PES	AEC	Comments	Conf
C/D	D	Further reduced flows (and possible very low/no flow periods) would result in further degradation of the EC. The channel would continue to become shallower and sandier.	3.5

E6 EWR 6: NKONGOMA (CROCODILE RIVER)

D5.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1939, 1963, 1977, 1997). Hydrology records.	
Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the Ecological Reserve of the Crocodile River catchment; 2002).	3
Site survey information.	

E6.1 REFERENCE CONDITIONS

E6.2 PRESENT ECOLOGICAL STATE

E6.2.1 Site suitability

This provides an assessment of the suitability of the					
	SCORES:				Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.8	Morphology representative, and impacts at site
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	(limited vegetation disturbance on the bank outside
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	3.5	although possibly slightly better at this site.
Morphological Cues				1.7	
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	2.0	Bedrock dominated section of the river, with alluvial
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.0	deposits in the channel. No clear terraces are present.
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	
Sediment Transport Modelling				4.3	This is a hadland system and PPMT modelling is
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	5.0	therefore appropriate and has already been conducted
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	study.
OVERALL SCORE:				3.3	

Site description			
	EWR 6 is a mixed anastomosing	channel type and is representative of th	e macro-reach. The
Morphology of the site	site runs across a bedrock rapid a of a number of active channels influence. A relatively thin, mostly bed is mobile, even under the demonstrates a strong directional active channel, probably due to re become more vegetated and stability	area. Downstream there is a deep pool. inset into a wider macro-channel. The sandy veneer of alluvium overlies the do lowest flow conditions. The aerial change from a wide channel to a few mu educed floods and flows generally. The l lised.	The channel consists re is strong bedrock minant bedrock. The photographic record ich smaller, narrower bars and banks have
PES	C (66.6%)	Confidence	3

E6.2.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
6	Reduced sediment transport capacity.	Reduced flows from the Kwena Dam; abstraction from towns; extensive irrigation abstractions.	F	2
С	Increased sediment supply.	Primarily agriculture, but also sediment introduction due to erosion in informal settlement areas.	NF	3

E6.3 TREND

PES	Trend	Trend PES	Time	Reasons	
С	Negative	C/D	10 years	The aerial photographic record demonstrates a strong directional change from a wide channel to a few much smaller, narrower active channel probably due to reduced floods and flows generally. The bars and banks have become more vegetated and stabilised.	3

E6.4 REC: B

PES	REC	Comments	Conf
С	С	The pools have filled in extensively due to a combination of reduced flows and increased erosion in the catchment and it will therefore not be possible to improve the geomorphology beyond the C EC.	3

E6.5 AEC: D

PES	AEC	Comments	Conf
С	C/D	Reduced floods and reduced low/base flows will exacerbate the sedimentation of the pools in this area.	2.5

E7 EWR 7: HONEYBIRD (KAAP RIVER)

E7.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1936, 1959, 1970, 1984, 1997). Hydrology records.	
Sediment transport analysis (adapted from Dollar and Biker, Geomorphology Specialist report for the Ecological Reserve of the Crocodile River catchment; 2002).	3
Site survey information.	

E7.2 REFERENCE CONDITIONS

E7.3 PRESENT ECOLOGICAL STATE

E7.3.1 Site suitability

This provides an assessment of the suitability of the						
		SCORES:			Notes	
	5	2	1	SCORE		
Representivity of the site for the reach	2.8	Morphology representative, but impacts (alien				
How well does the morphology of the site represent that	Voruwell	Don't know	Poorly		vegetation, bank disturbance) at site are possibly	
of the reach?	very wen	DOITT KITOW	FOOIly	3.0	slightly worse at this site due to historic disturbance	
To what extent is the condition of the site representative	Poprocontativo	Don't know	Vory different		along and near the road crossing. Bridge will have	
of the general condition of the reach?	Representative	DOITT KHOW	very unerent	2.5	backup effect at high flows	
Morphological Cues				2.0		
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	3.0	Bedrock dominated section of the river, with lateral	
Are there good morphological clues that can be related	d Very good	Don't know	Bad		alluvial deposits. Terrace may be an artefact of	
to flood levels?				2.0	backup effects and old bank disturbance.	
If these are present, are the terraces paired?	Yes	Don't know	No	1.0		
Sediment Transport Modelling				4.3	This is a bedload system and PRMT modelling is	
Is the river a bedload dominated system (i.e. is potential	Voc	Don't know	No		therefore appropriate and has already been conducted	
bed material tranpsort modelling suitable)	163	DOITT KINOW	NO	5.0	in a previous study. Will use these results for this	
Is potential bed material transport modelling going to be	Vec	Don't know	No		study	
undertaken at this site?	163	DOITT KINOW	NO	4.0	olddy.	
OVERALL SCORE:	3.0					

E7.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Reduced sediment transport capacity.	Reduced flows from abstraction, forestry etc.	F	
В	Increased sediment supply.	Primarily agriculture, but also sediment introduction due to erosion in informal settlement areas.	NF	3

E7.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Negative	B/C	10 years	The aerial photos demonstrate a directional change towards a narrower, less dynamic river channel.	3

E7.5 REC: B

PES	REC	Comments				
В	В	Maintain the current EC, but address the negative trend. This will require the provision of adequate moderate floods to scour the channel and prevent narrowing and encroachment. An improvement in EC is not possible.	N/A			

E7.6 AEC: D

PES	AEC	Comments	Conf
В	С	The proposed Mountain View Dam in this upper catchment would reduce the flooding frequency and size of floods.	2

E8 EWR 1: UPPER SABIE (SABIE RIVER)

E8.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1956, 1965, 1997). Sediment transport modelling and analysis undertaken for this study. Hydrology records. Site survey information at time of study.	3

E8.2 REFERENCE CONDITIONS

E8.3 PRESENT ECOLOGICAL STATE

E8.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach	3.5				
How well does the morphology of the site represent that	Very well	Don't know	Poorly		Morphology representative, but condition may be
of the reach?	very wen	DOITT KHOW	1 Oony	4.0	poor due to recent extensive fires and excessive
To what extent is the condition of the site representative	Representative	Don't know	Very different		sediment input from foresty, and burnt, areas
of the general condition of the reach?	Representative	DOITT KHOW	very unerent	3.0	
Morphological Cues				2.3	
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	2.0	Mixed bedrock/alluvial site. Teraces on the one
Are there good morphological clues that can be related	Very good	Don't know	Bad		bank, the other bank is a steep cut bank with bedrock
to flood levels?	very good	DOITT KINW	Dau	3.0	influence. Terraces are not paired.
If these are present, are the terraces paired?	Yes	Don't know	No	2.0	
Sediment Transport Modelling				2.3	This is a bedload system and PBMT modelling would
Is the river a bedload dominated system (i.e. is potential	Voc	Don't know	No		be appropriate, but the budget only allows for priority
bed material tranpsort modelling suitable)	165	DOITT KHOW	NO	5.0	sites to be modelled in this way. Priority is likely to lie
Is potential bed material transport modelling going to be	Voc	Don't know	No		further down the catchment (i.e. near or inside the
undertaken at this site?	Tes	DOITT KHOW	NO	1.0	Kruger National Park).
OVERALL SCORE:				2.7	

Site description	Upstream impacts upon the sit Forestry; A few, small weirs and illegal a Return sewage flows from Sat Virgin MAR: 152 MCM; Preser	e include: https://www.intlanding.com/interference/inter	EVIE 1 2007 Terri Menne 2007			
Morphology of the site	The site is a pool-riffle system with a boulder/cobble bed and gravel and large san component. It is possible that the sand component has increased due to upstream forestu activities and has led to a reduction in channel size. Aerial photos indicate an increase i woody vegetation cover. The riparian zone is heavily infested with exotic vegetation and has recently burnt prior to the site visit. The flood terraces are composed of fine sands and no paired, as one bank is a steep cut bank.					
PES	B (83.3%)	Confidence	3.5			

E8.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Small changes to the sediment supply.		NF	
В	Decreased flows due to a reduction in size of the active channel.	Forestry activities.	F	3.5
	Forestry and abstraction.	Flow reduction.	F	

E8.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В			3

E8.5 REC: B

PES	REC	Comments	Conf
В	В	The current scenario will not result in an improvement of the EC.	N/A

E8.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	Increased sediment load due to poor land management in forestry and other upstream landuse activities will result in a C EC due to serious changes in channel morphology and increased bars. Vertical and horizontal channel connectivity will be impacted due to more weirs.	2.5

E9 EWR 2: AAN DE VLIET (SABIE RIVER)

E9.1 DATA AVAILABILITY

	-
Data availability	Conf
Historical aerial photography (1944, 1954, 1965, 1974, 1984, 1997). Sediment transport modelling and analysis undertaken for this study. Hydrology records. Site survey information at time of study.	3

E9.2 REFERENCE CONDITIONS

E9.3 PRESENT ECOLOGICAL STATE

E9.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach	3.0	Morphology not year representative (wide floodalain			
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	3.0	is atypical), and condition may be poorer due to bank modification and vegetation removal associated with
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	3.0	resort.
Morphological Cues					
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	3.0	Mixed bedrock/alluvial site. Floodplain on the one
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.5	bank, other bank is steep cut bank. Terraces are not paired.
If these are present, are the terraces paired?	Yes	Don't know	No	2.0	
Sediment Transport Modelling				2.3	This is a bedload system and PBMT modelling would
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	5.0	be appropriate, but the budget only allows for priority sites to be modelled in this way. Priority is likely to lie
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	1.0	further down the catchment (i.e. near or inside the Kruger National Park).
OVERALL SCORE:				2.6	

Site description			
Morphology of the site	Although the site where the cross anastomosing sections. The site extensive floodplain area. A wide may not be typical of the reach I atypical. Landscaping/disturband placement of chalets along the riv has likely been engineered, and s at the site has shrunk, and the rip bed material has similarly fined.	-section is located is pool riffle, the rea has riffles, vegetated banks and island floodplain pocket occurs on the south MRU Sabie A as this very wide flood ce of the banks have occurred for g ver banks. The northern bank is erodi small scale sand mining has occurred parian zone has become more well-w	ch has numerous bedrock ds, pools and runs, and an ern bank, and thus the site plain section is somewhat garden/park creation, and ng, and the southern bank here. The active channel boded. It is likely that the
PES	B (85.3%)	Confidence	3.5

E9.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Channel incision/confinement and straightening.	Landscaping/disturbance of the RB has occurred for garden/park creation, and placement of chalets along the river banks and impacts on the floodplain to some extent.	NF	3
	Some slight changes to sediment supply.	Landuse activities (agriculture).		

E9.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В			3

E9.5 REC: B

PES	REC	Comments	Conf
В	В	Maintain the current EC.	N/A

E9.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	Sedimentation would increase and flood frequency will be reduced due to increased abstraction.	2

E10 EWR 3: KIDNEY (SABIE RIVER)

E10.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1956, 1964, 1970, 1997). Sediment transport modelling and analysis undertaken for this study. Hydrology records. Site survey information at time of study, and previous cross-sectional surveys over the last 15 years (from unpublished PhD research and KNP River Research Programme).	5

E10.2 REFERENCE CONDITIONS

E10.3 PRESENT ECOLOGICAL STATE

E10.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach	4.0	Sit is Within a BA channel segment, although at the			
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	cross-section there is extensive alluvial influence (
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	4.0	reaches.
Morphological Cues		1.2	No true morphological cues. The "terrace" at the site could be an old		
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	1.5	BCB now forming part of a lateral bar. It is unlikely that the seasonal
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	1.0	Breonadia are more than 1.5m in diameter and very far from the channel. Probably tapping in to subsurface flows along the old
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	seasonal channel pathway?
Sediment Transport Modelling				5.0	Excellent candidate for PBMT modelling -
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	5.0	bedload(sand,gravel,cobbles)system. PBMT to be undertaken at this site due to its high priority status (low in the catchment to assess flood
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	5.0	requirements;sedim entation in the Sabie a longstanding concern and sit within the KNP).
OVERALL SCORE:				3.4	

Site description			
Morphology of the site	The site is a bedrock anastomos high bedrock influence and larg active channels. The channels a sections. The bedrock core bars downstream end of this section the macro-channel features. The site is located downstream Kruger National Park. There is o Although the site is in a B categor This is because the bedrock and least sensitive of all channel type section of the river, due to the inco It is in the narrow sections of the where sediment is preferentially of the loss of exposed bedrock are instream habitat diversity as the confidence in the PES assessment	sing channel form type with steep slope e mixed alluvial and bedrock core bars are diverse, having bedrock, boulder, col (usually dominated by B. salicina) sepan here are large sandy lateral bars. These of Hazyview, and this section of the rive ne dam upstream, but floods are only mo bry, the reach is likely to be in a lower (I stomosing channel type (in which this EV sto sedimentation. Sedimentation is th reased erosion and decreased flows aris he river, characterised by braided and p deposited and stored. This increase in se as and riffles, as well as deep pools, ca e sites all tend towards sandy shallow nt is a 4.	s; multiple channels with in between the several obles, gravels and sandy rate the channels. At the are high elevation, stable er forms on border of the iderately affected. ower B or B/C) category. WR site is located) is the e primary problem in this ing from upstream. pool-rapid channel types, ediment storage results in ausing a decrease in the systems. Therefore the
PES	B (84.6%)	Confidence	4

E10.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Increased sediment supply – increased fines and deposition, loss of pools.	Intensive settlement (extensive peri-urban areas with large bare areas) and heavy grazing pressures. Extensive forestry and poor landuse in lower catchment as well as erosion.	NF	3
	Decreased flows – reduced sediment transport potential.	Forestry; irrigation, and abstraction.	F	

E10.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Negative	B/C	10 years	Increased sediment and decreased transport capacity will continue to cause aggradation and loss of bedrock influence. Although this particular site is not very sensitive to sedimentation, other sections of the river (immediately up- and downstream) would show the effects of sedimentation, and loss of habitat diversity, more quickly.	3.5

E10.5 AEC: B/C

PES	AEC	Comments	Conf
В	С	Increased sedimentation, particularly in the braided and pool-rapid channel type sections of this reach. Habitat changes will include more extensive reeds, shallower channels and a loss of deep pools and bedrock rapids and riffles.	3

E11 EWR 4: MAC MAC (MAC MAC RIVER)

E11.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1954, 1965, 1974, 1984, 1996). Site survey information at time of study.	2
Daily flow data is required to undertake sediment (potential bed material) transport modelling so that effective discharge classes can be determined. At this site, no daily hydrological data were available – the nearest flow gauge is too far away to be used with any confidence to represent the flows at this site.	3

E11.2 REFERENCE CONDITIONS

E11.3 PRESENT ECOLOGICAL STATE

E11.3.1 Site suitability

This provides an assessment of the suitability of the					
	SCORES:				Notes
	5	2	1	SCORE	
Representivity of the site for the reach				3.8	
How well does the <i>morphology</i> of the site represent that	Very well	Don't know	Poorly	25	In terms of condition, the site is likely to be
Of the reach?				3.5	river
of the general condition of the reach?	Representative	Don't know	Very different	4.0	
Morphological Cues		1.7	No true morphological cues. The "terrace" at the site could be an old		
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	1.5	BCB now forming part of a lateral bar. It is unlikely that the seasonal
Are there good morphological clues that can be related	Vory good	Don't know	Rod		Breonadia are more than 1.5m in diameter and very far from the
to flood levels?	very good	DOITT KHOW	Dad	2.5	channel. Probably tapping in to subsurface flows along the old
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	seasonal channel pathway.
Sediment Transport Modelling				2.3	
Is the river a bedload dominated system (i.e. is potential	Voc	Don't know	No		Excellent candidate for PBMT modelling -
bed material tranpsort modelling suitable)	165	DOITT KIOW	NO	5.0	prevent PBMT from being undertaken at this site. Only priority
Is potential bed material transport modelling going to be	Voc	Don't know	No		(probably KNP) site/s to have sed transport modelling done.
undertaken at this site?	185	DOLLKIOW	110	1.0	
OVERALL SCORE:				2.6	

E11.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A	Small changes to the sediment supply due to forestry, but steep river precludes any morphological adjustment.	Extensive Forestry.	NF	3.5
	Decreased low flows and lower fines transport.		F	

E11.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
А	Stable	A		Extensive forestry and associated increased sediment runoff may increase the sediment load, but this steep bedrock river section is not sensitive to such small changes.	2.5

E11.5 AEC: C

PES	AEC	Comments	Conf
А	В	Channel connectivity will decrease due to more weirs in the system. Increased sediment loads will occur due to increased hillslope erosion and more weirs.	2

E12 EWR 5: MARITE (MARITE RIVER)

E12.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1954, 1965, 1974, 1984, 1997). Sediment transport modelling and analysis undertaken for this study. Hydrology records. Site survey information at time of study. Previous 1996 IFR study.	3

E12.2 REFERENCE CONDITIONS

E12.3 PRESENT ECOLOGICAL STATE

E12.3.1 Site suitability

This provides an assessment of the suitability of the						
	SCORES:				Notes	
	5	2	1	SCORE		
Representivity of the site for the reach				4.0	Morphologically representative. In terms of condition	
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	the site appears to be representative (from Google Earth imagen), s few impacts are evident along this	
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	4.0	river.	
Morphological Cues						
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	1.5	No true morphological cues - upstream of the site there are apparent	
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.5	terraces, but these are not paired and seem to be composed of sand waves - not really reflecting long term flood histories.	
If these are present, are the terraces paired?	Yes	Don't know	No	1.0		
Sediment Transport Modelling				4.3		
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	5.0	Good candidate for PBMT modelling - bedload(sand,gravel) system.Must undertak PBMT from being undertaken at this site as	
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	there are no morphological cues to use assess flood requirements.	
OVERALL SCORE:				3.3		

Site description	Partie 2007 Dalla Billione Partie 2007 Dalla Billione Pa		Abditiss The EWR 5 The EWR 5 T
Morphology of the site	The river is sandy and boulder of upstream. The site has shown p the bars since the 1980's, and th 2000 floods. The scale of photo assess the (likely) sedimentation system to determine PES with hig	dominated. Riffles and deep pools are p progressively more stabilisation and vege here has been little removal of this veget ography and size of the channel makes in issues at the site and hence ascribe t gh accuracy.	resent with sandy runs tation encroachment of ation from the extreme it difficult to confidently he "natural" flux of the
PES	C (65.23%)	Confidence	2.5

E12.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
C	Changes to the sediment supply - the size of the active channel is reduced; larger component of fines on the bed.	Reduced flows from Inyaka Dam.		25
C	Decreased flows - the size of the active channel is reduced; woody vegetation encroachment and stabilisation of the bed.	Inyaka Dam is upstream – reduced flows and floods.	Г	3.5

E12.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	D	10 years	The dam is relatively new and the channel will continue to adjust to the new flows.	3

E12.5 REC: B

PES	REC	Comments	Conf
С	С	Given the relatively recent completion of the large dam upstream of the site, it would be difficult to improve the condition of the Geomorphology of the areas downstream of the dam (such as at our site) One option would be to release at least some of the high flows, as this may halt the negative trajectory and maintain the current EC. However restoration of some flows is insufficient to counteract the catchment-wide degradation, and thus this action would only result in an improvement within the EC.	3

E12.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	Continuing erosion in the lower catchment would cause an increase in sediment storage in the channel (sediment production remains high, but the ability of the river to remove/transport it is reduced as a result of reduced flows). This will result in a sandier river, some riffles and bedrock areas in the reach will be lost, vegetation encroachment on bars and banks will take place and cobbles will be embedded.	2

E13 EWR 6: MUTLUMUVI (MUTLUMUVI RIVER)

E13.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1954, 1965, 1974, 1984, 2001). Site survey information at time of study. 1996 IFR site information (Godfrey, 2002). Daily flow data is required to undertake sediment (potential bed material) transport modelling so that effective discharge classes can be determined. At this site, no daily hydrological data were available – the nearest flow	3

E13.2 REFERENCE CONDITIONS

E13.3 PRESENT ECOLOGICAL STATE

E13.3.1 Site suitability

This provides an assessment of the suitability of the	site for EWR de	etermination s	tudies		
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach				4.0	Morphologically representative. In terms of condition
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	the site appears to be representative (from Google Earth imagery) - few impacts are evident along this
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	4.0	river.
Morphological Cues				1.5	
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	2.0	One peoplifie terrane on one bank, but not paired. The site is strengly
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	1.5	bedrock influenced.
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	
Sediment Transport Modelling				3.8	
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	3.5	Good candidate for PBMT modelling - bedload(sand,gravel) system.Must undertak PBMT from being undertaken at this site as
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	there are no morphological cues to use assess flood requirements.
OVERALL SCORE:				3.1	

Site description			
Morphology of the site	The site is a multi-channel controlled. The macro-cha vegetated bars and sedin significantly due to poor lar channel is occurring along t Material Transport (PBMT, terrace occurs, but is not pai typically high energy environ	I, bedrock to mixed anastomosing nnel floor has become more stab nent loads from the upstream c id management. Some (small-scal he reach (MRU). There are no mo or bedload sediment) modelling is red. The general absence of fine se ment.	g channel type; strongly bedrock ilised through larger, increasingly atchment areas have increased le) sand mining within the macro- rphological cues, so Potential Bed essential at this site. Possibly a ediment in the channels indicates a
PES	C (71.0%)	Confidence	3

E13.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf	
C	The channel banks and bed have become more stable.	Reduced flows.	F	2	
ن	Reduced size of the active channel.	Sediment as a result of poor land use management in lower areas.	NF	3	

E13.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		No large scale impacts, and the higher sediment yields from the catchment should be consistent in future.	2.5

E13.5 REC: B

PES	REC	Comments		
С	С	Flows alone will not lead to an improvement. Primarily the river is responding to poor landuse activities and associated increased erosion and sedimentation in the river.	N/A	

E13.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	This scenario assumes that a large dam in the upper catchment is removing many of the flood flows, as well as deteriorated landuse management practices.	2

E14 EWR 7: TLULANDZITEKA (TLULANDZITEKA RIVER)

E14.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1965, 1974, 1997).	2
Site survey information.	-

E14.2 REFERENCE CONDITIONS

E14.3 PRESENT ECOLOGICAL STATE

E14.3.1 Site suitability

This provides an assessment of the suitability of the					
		SCORES:			Notes
	5	2	1	SCORE	
Representivity of the site for the reach				4.0	Upstream of the site the river is predominantly
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.0	undisturbed. Downstream of the site there is encroachment from farming along the banks. At
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	4.0	thesite site the effects of the road and bridge have impacted the river.
Morphological Cues				1.5	
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	2.0	Cut bank on the left terrors on the right bank which become privat
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	1.5	going upstream away from the bridge.
If these are present, are the terraces paired?	Yes	Don't know	No	1.0	
Sediment Transport Modelling				4.0	
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	4.0	An good candidate for PBMT modelling - bedload(sand,gravel) system, although site is upstream of a bridge and downstream the
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	4.0	sediments are slightly coarser downstream.
OVERALL SCORE:				3.2	

Site description	testo 2007 digitaldade testo 2007 digitaldade testo 2007 digitaldade		
Morphology of the site	The active channel width has reduced on the active channel floor, sugged A combination of reduced floods catchment activities may have pro- bars are highly stabilised by the of most management scenarios since	uced significantly and there has beer esting a reduction in flood flows and and possible increased nutrients an pmoted the expansion of the reeds in dense reedbeds, and these reedbeds e reeds are very robust and difficult to	a net increase of vegetation stabilization of the sediment. I sediment derived from the the channel. The banks and are likely to persist through reduce.
PES	C/D (61.44%)	Confidence	2.5

E14.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Small changes to the sediment supply.	Few dams, roads, extensive grazing.	NF	
С	Decreased flows - the size of the active channel is reduced.	Abstraction, forestry, dam upstream.	F	3.5

E14.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
C/D	Stable	C/D		No further changes expected as reeds have dominated the channel bed and therefore it is unlikely that they would be removed. Additional vertical increases in the reedbeds (due to flood deposition) may occur, but this is not likely to result in a channel morphology change.	2.5

E14.5 AEC: B

PES	AEC	Comments	Conf
C/D	С	Reduction in sediment delivery to channel and reduced erosion. Sufficient high flows are provided by overtopping of the dam.	3

E14.6 AEC: D

PES	AEC	Comments	Conf
C/D	D	The geomorphological consequences will be an increase in bed height, more subsurface flows and sediment with resulting decrease in riffles and shallower pools.	3

E15 EWR 8: LOWER SAND (SAND RIVER)

E15.1 DATA AVAILABILITY

Data availability	Conf
Historical aerial photography (1944, 1965, 1974, 1984, 1997). Sediment transport modelling and analysis undertaken for this study. Hydrology records. Site survey information at time of study.	3.5

E15.2 REFERENCE CONDITIONS

Reference conditions	Conf
1944	
1974	2.5
1984	3.5
Fluvius Environmental Consultants Managing water for the environment	
Sable EWR Site 8: There is little perceptible change, although the active channel width may have narrowed, and the macro-channel floor appears increasingly stabilised. This suggests a small reduction in flood flows and possible stabilisation of the sediment.	
Reference condition includes a wide active channel with a less stable macro channel floor.	

E15.3 PRESENT ECOLOGICAL STATE

E15.3.1 Site suitability

This provides an assessment of the suitability of the							
SCORES:					Notes		
	5	2	1	SCORE			
Representivity of the site for the reach				4.5			
How well does the <i>morphology</i> of the site represent that of the reach?	Very well	Don't know	Poorly	4.5	Site is representative of the reach - largely		
To what extent is the <i>condition</i> of the site representative of the general condition of the reach?	Representative	Don't know	Very different	4.5	undistarbea, sandy system with bearbek outerps.		
Morphological Cues				2.2			
Is the site a bedrock or alluvial dominated section?	Alluvial	Mixed	Bedrock	3.5			
Are there good morphological clues that can be related to flood levels?	Very good	Don't know	Bad	2.0	Cues are not paired or clear - multiple channel site.		
If these are present, are the terraces paired?	Yes	Don't know	No	1.0			
Sediment Transport Modelling				4.7			
Is the river a bedload dominated system (i.e. is potential bed material tranpsort modelling suitable)	Yes	Don't know	No	4.0	An excellent candidate for PBMT modelling - priority because it is low down in the catchment.		
Is potential bed material transport modelling going to be undertaken at this site?	Yes	Don't know	No	5.0			
OVERALL SCORE:				3.8			

E15.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Increased sediment supply - the size of the active channel has probably reduced, macro-channel floor is stabilizing.	Landuse practices.	NF	3
•	Decreased flows - the size of the active channel is reduced.	Extensive Forestry; irrigation, abstraction.	F	

E15.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	10 years	The sandy nature of the river means that this reach is relatively resilient to moderate flow reductions and sediment increases. However the high sediment loads derived from this catchment are reducing in- channel bedrock influence (Rountree, unpublished report) and filling in	2.5

PES	Trend	Trend PES	Time	Reasons	Conf
				pools (Kleynhans, <i>pers comm</i> .).	

E15.5 AEC: C

PES	AEC	Comments	Conf
С	С	This will cause a slight reduction in the EC but will not be enough to cause a change in category.	2

E16 REFERENCES

Parsons, M., McLoughlin, C., Rountree, M.W. and Rogers, K.H. (in press). The initial biotic and abiotic legacy of a large infrequent flood disturbance in the semi-arid Sabie River, South Africa. *River Research and Applications*.

Rountree, M.W. and Rogers, K.H. 2004. Channel pattern changes in the mixed bedrock/alluvial Sabie River, South Africa: response to and recovery from large infrequent floods, *Ecohydraulics 2004 Proceedings*.

Rountree, M. W., Heritage, G. L. and Rogers, K. H. 2001. In-channel metamorphosis of a mixed bedrock/alluvial river system: Implications for Instream Flow Requirements, In M.C. Acreman (Ed) *Hydro-Ecology: linking hydrology and ecology*. IAHS, p113-125.

Heritage, G.L., Moon, B.P., Jewitt, G.P., Large, A.R.G. and Rountree, M.W. 2001. The February 2000 floods on the Sabie River, South Africa: an examination of their magnitude and frequency. *Koedoe* 44:1, p37-44.

Rountree, M.W., Rogers, K.H. and Heritage, G.L. 2000. Landscape state change in the semi-arid Sabie River, Kruger National Park, in Response to Flood and Drought. *South African Geographical Journal* 82: 173-181.

APPENDIX F: FISH P Kotze, Clean Stream Biological Services

F1 EWR 1: VALEYSPRUIT (CROCODILE RIVER)

F1.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile. Sable-Sand & Olifants River Systems	4
Regional specialist input (Dr. J. Engelbrecht)	

F1.2 REFERENCE CONDITIONS

F1.2.1 Summary of reference conditions

Information on the expected reference conditions for fish at NRHP site X2CROC-VALYS, according to Kleynhans *et al.* (2007) was used to determine the expected reference conditions. This reference condition for fish should be valid for the entire Natural Resource Unit (NRU) Croc A and the stretch of the Crocodile within EcoRegion 9.02. Only one indigenous fish species, namely *Barbus anoplus* (Chubbyhead barb) is expected at this site under reference conditions. This species is expected at more than 75% of sites in a reach and should be present in moderate abundance (Table F1).

Table F1EWR 1: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 1 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC			
Barbus anoplus	Chubbyhead barb	BANO	5	5			
FROC ratings: 0 = absent 1 = present at very few sites (<1 2 = present at few sites (>10 - 25	3 = present at ab0%)4 = present at and5%)5 = present at alr	out >25 - 50% (ost sites (>50 - nost all sites (>	of sites 75%) 75%)				

F1.3 PRESENT ECOLOGICAL STATE

F1.3.1 Site suitability

Site suitability in terms of assessment index	The optimally preferred habitat for the only <i>B. anoplus</i> very well represented at site. As only one fish species, and it being only process may have to be lower than other bio Fish habitats (velocity-depth categories ar expected habitats of the RAU. Limiting factor for FRAI application may be p	expected fish s semi-rheophili otic components nd associated presence of sing	species , namely semi-rheophilic c, fish weighting of fish in EWR s. cover) at site highly similar to gle expected fish species.
	EWR suitability = 2.5 Site FRAI suitability = 4.5	Confidence	4

The PES for fish should be valid for the entire reach of the Crocodile River within NRU Croc A, and thus within EcoRegion 9.02. Special emphasis was placed on the section from Dullstroom to the end of EcoRegion 9.02.

PES description	The fish population is still close to natural. habitat alteration due to sedimentation and rainbow trout (<i>Oncorhynchus mykiss</i>).	Some stresso bank erosion, a	rs are present in low intensity, such as and the presence of the alien predatory
	A (92.6%)	Confidence	5

F1.3.2 PES causes and sources

PES	Causes Sources			Conf
	Sedimentation of substrates.	Increased erosion, grazing and bank instability.		3.5
A	Loss of overhanging vegetation as cover.	Bank erosion and instability.	NF	
	Pressure on fish assemblage/predation.	Aliens (Trout).		

F1.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A	Stable	A		The fish assemblage in this section of the Crocodile River have adapted to the slightly altered water quality and flows, as well as the presence of alien rainbow trout for many years, and should remain fairly stable over the long term should current conditions prevail.	4

F1.5 AEC: B/C

PES	AEC	Comments	Conf
A	B/C	Decreased flows and some moderate events will result in decreased flushing of sediment from the substrate, the primary cover available for <i>B. anoplus</i> (in the absence of overhanging vegetation as result of steep banks). The above mentioned scenario is therefore expected to decrease the FROC of <i>B. anoplus</i> .	4

F2 EWR 2: GOEDEHOOP (CROCODILE RIVER)

F2.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Dr. J. Engelbrecht).	4

F2.2 REFERENCE CONDITIONS

Information on the expected fish reference conditions at the NRHP site X2CROC-UKWEN, as cited in Kleynhans *et al.* (2007) was used to determine the expected fish reference conditions. This fish reference condition should be valid for the Crocodile River stretch within NRU Croc A that falls within EcoRegion 9.04. Ten indigenous fish species are expected under reference conditions. Most species are expected to have frequent occurrence within their optimal habitats at the site under reference conditions. Reference species detail is listed in Table F2.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 2 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names Common Name		Spp abbreviation	Reference FROC	Derived FROC			
Amphilius natalensis	Natal mountain catfish	ANAT	4	3			
Amphilius uranoscopus	Mountain catfish	AURA	5	2			
Barbus anoplus	Chubbyhead barb	BANO	5	4			
Barbus argenteus	Rosefin barb	BARG	5	1			
Barbus neefi	Sidespot barb	BNEE	5	5			
Chiloglanis bifurcus	Incomati suckermouth	CBIF	3	0			
Chiloglanis pretoriae	Shortspine suckermouth	CPRE	5	3			
Kneria auriculata	Southern kneria	KAUR	5	3			
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	5	5			
Tilapia sparmanii	Banded tilapia	TSPA	4	4			
FROC ratings: 0 = absent 3 = present at about >25 - 50% of sites 1 = present at very few sites (<10%)							

Table F2EWR 2: Reference fish species

F2.3 PRESENT ECOLOGICAL STATE

F2.3.1 Site suitability

Site suitability in terms of assessment	Habitat for small rheophilic species very well represented at EWR site. Fish habitats (velocity-depth categories and associated cover) at site highly similar to expected habitats of the RAU.				
index	EWR suitability = 4Confidence4Site FRAI suitability = 44				

This PES for fish was determined for the stretch of the Crocodile River for NRU Croc A that falls within Ecoregion 9.04, within which site EWR 2 is situated.

PES description	The PES reflects slightly deteriorated ecolo	gical integrity,	primarily attributed to altered low flows
	and increased sedimentation and slightly all	tered water qua	ality. Most of the expected fish species
	are however still present in this reach, althou	ugh in reduced	abundance and spatial distribution.
	B (82.4%)	Confidence	4

F2.3.2 PES causes and sources

PES	Causes	F/NF	Conf	
	Sedimentation of substrates.	Increased erosion, grazing and bank instability.	NF	
В	Loss of overhanging vegetation as cover.	Bank erosion and instability.		3
	Pressure on fish assemblage/predation.	Aliens (rainbow trout).	F	-
	Slightly reduced habitat diversity and availability.	Decreased flows related to abstraction.	Г	

F2.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The fish assemblage has adapted to the slightly altered water quality and flows, as well as the presence of alien rainbow trout for many years, and should remain fairly stable over the long term.	3

F2.5 AEC: C

PES	AEC	Comments	Conf
A	B/C	Altered flow regime (increase low flows) will negatively impact on the FROC of species that are intolerant to no flow conditions and prefer fast habitats (<i>A. natalensis, A. uranoscopus, B. argenteus, C. bifurcus</i> and <i>C. pretoriae</i>). Altered flows (decreases) may even result in the loss of the critically endangered <i>C. bifurcus</i> from this reach.	4

F3 EWR 3: POPLAR CREEK (CROCODILE RIVER)

F3.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): <i>Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements.</i> Rivers Database (2007): <i>Database on fish distribution in South African Rivers.</i> WRC (2001): <i>State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.</i> Regional specialist input (Dr. J. Engelbrecht).	4

F3.2 REFERENCE CONDITIONS

Information on the expected fish reference conditions at the NRHP site X2CROC-DKWEN, as cited in Kleynhans *et al.* (2007) was used to determine the expected reference conditions. This fish reference condition should be valid for the Crocodile River stretch within NRU Croc D and E (EcoRegions 10.01 and 10.02). Seven indigenous fish species are expected under reference conditions. Most species are expected to have frequent occurrence within their optimal habitats at the site under reference conditions. Reference species detail is listed in Table F3.

Table F3	EWR 3: Reference fish species
----------	-------------------------------

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 3 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Anguilla mossambica	Longfin eel	AMOS	4	3		
Amphilius uranoscopus	Mountain catfish	AURA	5	5		
Barbus argenteus	Rosefin barb	BARG	5	4		
Chiloglanis bifurcus	Incomati suckermouth	CBIF	3	3		
Chiloglanis pretoriae	Shortspine suckermouth	CPRE	5	5		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	3	3		
Tilapia sparmanii	Banded tilapia	TSPA	3	1		
FROC ratings: 0 = absent 1 = present at very few sites (<10 2 = present at few sites (>10 - 25	3 = present %) 4 = present %) 5 = present	at about >25 - 50% of s at most sites (>50 - 75% at almost all sites (>75%	iites %) %)			

F3.3 PRESENT ECOLOGICAL STATE

F3.3.1 Site suitability

Site suitability in terms of assessment	Site suitability in terms of assessmentHabitat for small rheophilic species very well represented at site. Fish habitats (velocity-depth categories and associated cover) at site highly sin expected habitats of the RAU.				
index	EWR suitability = 4.5 Site FRAI suitability = 4.0	Confidence	4		

This PES for fish was determined for the stretch of the Crocodile River for MRU Croc B within which site EWR 3 is situated.

PES description The PES reflects slightly deteriorated ecological integrity, based on the fish assemblage, primarily attributed to an altered low flow regime (Kwena Dam), increased sedimentation and slightly altered water quality. Most of the expected fish species are however still present in this reach, although be it in reduced abundance and spatial distribution. Species preferring fast habitats have been favoured and species with requirement for slower habitats have been impacted by the

flow modification.		
B (84.7%)	Confidence	4

F3.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Sedimentation of substrates.	Sedimentation of substrates. Increased erosion related to agriculture, forestry, grazing and bank instability.		
	Loss of overhanging vegetation as cover.	Bank erosion and instability.	NF	
	Pressure on fish assemblage/Predation.	Introduced/translocated indigenous species (Clarias gariepinus).		
	Loss in habitat diversity.	Altered hydrological regime (Kwena Dam releases).		3
	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (especially Kwena dam, but also smaller weirs) impede natural migration. Altered hydrological events delay/prevent natural migratory cues (controlled releases from Kwena Dam).	F	

F3.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The fish assemblage has adapted to the slightly altered water quality and flows, as well as the presence of alien rainbow trout for many years, and should remain fairly stable over the long term.	3

F3.5 REC: B

PES	REC	Comments	Conf
В	В	Maintain the current EC.	4

F3.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	Increased duration of low flows, with lower water level will reduce the availability of riffle/rapid/run habitats (Fast Deep (FD)/Fast shallow (FS)), which will decrease the FROC of rheophilic and semi-rheophilic species (<i>A. uranoscopus, C. bifurcus</i> and <i>C. pretoriae</i>). Decreased low flows will further reduce the availability of overhanging vegetation as cover, which will also affect the FROC of species such as <i>P. philander</i> and <i>also T. sparmanii</i> . Decreased flows will also increase the availability of the preferred habitats (slow) of the introduced <i>C. gariepinus</i> with resultant increased abundance of this species that may increase the predation pressure on the indigenous fish species.	4

F4 EWR 4: KANYAMAZANE (CROCODILE RIVER)

F4.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Dr. L. Engelbrecht)	4

F4.2 REFERENCE CONDITIONS

Information on the expected fish reference conditions at the NHRP site X2CROC-DNELS, as cited in Kleynhans *et al.* (2007), was used to determine the expected reference conditions. Two species, namely *Barbus paludinosus* (BPAU) and *Micralestes acutidens* (MACU) was sampled during the current study and was therefore added to the expected fish species list. The fish reference condition set should be valid for the Crocodile River stretch within NRU Croc F lying downstream of Nelspruit. Twenty indigenous fish species are expected under reference conditions. Reference species are listed in Table F4.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 4 (Values used in FRAI) Observed species (HIGHLIGHTED)					
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC	
Anguilla mossambica	Longfin eel	AMOS	3	2	
Amphilius uranoscopus	Stargazer, mountain catfish	AURA	2	1	
Barbus eutaenia	Orangefin barb	BEUT	4	3	
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	5	
Barbus paludinosus	Goldie barb	BPAL	3	3	
Barbus trimaculatus	Threespot barb	BTRI	4	3	
Barbus unitaeniatus	Longbeard barb	BUNI	4	3	
Barbus viviparous	Bowstripe barb	BVIV	4	3	
Clarias gariepinus	Sharptooth catfish	CGAR	4	4	
Chiloglanus pretotiae	Shortspine suckermouth (Rock catlet)	CPRE	5	5	
Labeo cylindricus	Redeye labeo	LCYL	5	5	
Labeo molybdinus	Leaden labeo	LMOL	5	5	
Micralestis acutidens	Silver robber	MACU	3	3	
Marcusenius macrolepidotus	Bulldog	MMAC	4	3	
Oreochromus mossambicus	Mozambique tilapia	OMOS	4	4	
Opsaridium peringueyi	Southern barred minnow	OPER	5	4	
Petrocephalus wesselsi	Southern churchill	PCAT	3	2	
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	4	
Tilapia rendalli	Redbreast tilapia	TREN	3	3	
Tilapia sparmanii	Banded tilapia	TSPA	3	3	
FROC ratings: 0 = absent 1 = present at very few sites (<10 2 = present at few sites (>10 - 25	3 = present at about >25 - 0%) 4 = present at most sites (>50 - 75% 0%) 5 = present at almost all s	50% of sites) ites (>75%)			

Table F4EWR 4: Reference fish species

F4.3 PRESENT ECOLOGICAL STATE

F4.3.1 Site suitability

Site suitability in terms of assessment Habitats (velocity-depth categories and associated cover) at site highly set expected habitats of the RAU.				
index	EWR suitability = 4.0 Site FRAI suitability = 4.0	Confidence	4	

This PES for fish was determined for the stretch of the Crocodile River for NRU Croc F which equates to MRU Croc C downstream of Nelspruit.

PES description	The PES reflects slightly deteriorated ecolo	gical integrity, l	based on the fish assemblage, primarily
	attributed to an altered low flow regime	e (Kwena Dar	m and small farm dams), increased
	sedimentation and altered water quality (in	Icluding impact	s from town of Nelspruit). Most of the
	expected fish species are however still pres	ent in this reacl	n, although their relative abundance and
	spatial distribution have been altered. Sp	becies with a p	preference for fast habitats have been
	favoured as a result of flow modification	(constant relea	ses) and species with requirement for
	slower habitats have been negatively impact	ted as a result of	of this.
	B (84.2%)	Confidence	4

F4.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Altered fish assemblage (loss in abundance, breeding and feeding success). Altered fish assemblage (loss in abundance, breeding and feeding success).	Altered water quality (Nelspruit municipal area, White river municipal area, industrial runoff).	NF	2
	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (especially Kwena dam, but also smaller weirs) impede natural migration. Altered hydrological events delay/prevent natural migratory cues.	F	5

F4.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The fish assemblage has adapted to the altered flow regime and modified water quality and should remain fairly stable over the long term.	3

F4.5 REC: B

PES	REC	Comments	Conf
В	В	A higher category is unlikely to be attainable.	3

F4.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	Sedimentation of riffle/rapid areas will deteriorate conditions for species which have preference for substrate of good quality (AURA, CPRE, BEUT, LCYL, LMOL, OPER and BMAR). This scenario will also result in decreased availability of pools (slow habitats) and overhanging vegetation (albeit temporary) and may lead to decreased FROC for fish with preference for slower habitats and this cover type (especially BPAU, BVIV, MACU, MMAC, PWES, PPHI and TSPA).	4

F5 EWR 5: MALALANE (CROCODILE RIVER)

F5.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Dr. A Deacon).	4

F5.2 REFERENCE CONDITIONS

Information on the expected reference conditions at the NRHP site X2CROC-MALEL (EWR 5), as cited in Kleynhans *et al.* (2007) was used. The fish reference condition set should be valid for the Crocodile River stretch within NRU Croc G. Thirty-five indigenous fish species are expected under reference conditions. Reference species are listed in Table F5.

Table F5 EWR 5: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 5 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviati on	Reference FROC	Derived FROC		
Anguilla marmorata	Giant mottled eel	AMAR	1	1		
Anguilla mossambica	Longfin eel	AMOS	1	1		
Barbus annectens	Broadstriped barb	BANN	3	1		
Barbus eutaenia	Orangefin barb	BEUT	3	2		
Barbus afrohamiltoni	Hamilton's barb	BAFR	1	1		
Brycinus imberi	Imberi	BIMB	4	3		
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	5		
Barbus paludinosus	Goldie barb	BPAL	3	2		
Barbus radiatus	Beira barb	BRAD	4	3		
Barbus toppini		BTOP	3	2		
Barbus trimaculatus	Threespot barb	BTRI	5	4		
Barbus unitaeniatus	Longbeard barb	BUNI	4	4		
Barbus viviparous	Bowstripe barb	BVIV	5	5		
Clarias gariepinus	Sharptooth catfish	CGAR	5	5		
Chiloglanus paratus	Sawfin suckermouth (Rock catlet)	CPAR	5	3		
Chiloglanus pretotiae	Shortspine suckermouth (Rock catlet)	CPRE	4	2		
Chiloglanus swierstrai	Lowveld suckermouth (Rock catlet)	CSWI	3	2		
Glossogobius giurus	Tank goby	GGIU	3	2		
Hydrocynus vittatus	Tigerfish	HVIT	2	2		
Labeo congoro	Purple labeo	LCON	4	2		
Labeo cylindricus	Redeye labeo	LCYL	5	3		
Labeo molybdinus	Leaden labeo	LMOL	5	4		
Labeo rosae	Rednose labeo	LROS	3	2		
Labeo ruddi	Silver labeo	LRUD	1	1		
Micralestis acutidens	Silver robber	MACU	4	3		
Mesobola brevianalis	River sardine	MBRE	4	3		

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 5 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviati on	Reference FROC	Derived FROC		
Marcusenius macrolepidotus	Bulldog	MMAC	3	2		
Oreochromus mossambicus	Mozambique tilapia	OMOS	5	5		
Opsaridium peringueyi	Southern barred minnow	OPER	4	2		
Petrocephalus wesselsi	Southern churchill	PWES	3	1		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	3	3		
Schilbe intermedius	Silver catfish	SINT	3	2		
Synodontis zambezensis	Brown squeaker	SZAM	2	1		
Tilapia rendalli	Redbreast tilapia	TREN	4	4		
Tilapia sparmanii	Banded tilapia	TSPA	1	1		
FROC ratings:D = absent3 = present at about >25 - 50% of sites1 = present at very few sites (<10%)						

F5.3 PRESENT ECOLOGICAL STATE

F5.3.1 Site suitability

Site suitability in terms of assessment index	Habitat for small rheophilic species in adeq Fish habitats (velocity-depth categories expected habitats of the RAU. Estimated that the site have slightly more f should be considered in FRAI application.	uate abundanc and associated ast-shallow and	e at site. d cover) at site fairly similar to d less slow-deep than RAU, which
	EWR suitability = 3.5 Site FRAI suitability = 3.0	Confidence	4.5

This PES for fish was determined for the stretch of the Crocodile River for NRU Croc G (MRU D and part of E within Ecoregion 3.07).

PES description	The PES reflects moderately deteriorated ed	cological integri	ity, primarily attributed to an altered low
	flow regime, increased sedimentation, incre	eased benthic	algal growth and altered water quality.
	Most of the expected fish species are howe	ver still present	in this reach, although be it in reduced
	abundance and spatial distribution. The pre	esence of large	part of this stretch and most of the left
	bank and local catchment falling within	conservation	area (KNP) contribute somewhat to
	preservation of the overall ecological integrit	y of this section	b.
	C (66.1%)	Confidence	4

F5.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Sedimentation of substrates.	Increased erosion related to agriculture, grazing and bank instability.		3.5
	Altered fish assemblage (loss in abundance, breeding and feeding success).	Altered water quality especially increased nutrients related to seepage from sugarcane/agriculture).	NF	
С	Loss in natural habitat diversity (loss of deep pools due to sedimentation, loss of overhanging vegetation and undercut banks due to reduced flows).	Altered hydrological regime (especially as a result of abstraction for irrigation – primarily sugarcane).	F	
	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (small weirs) impede on natural migration. Altered hydrological events delay/prevent natural migratory cues.		

F5.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The fish assemblage in this section of the Crocodile River have adapted to the altered flow regime and modified water quality and should remain fairly stable over the long term should current conditions prevail.	3

F5.5 REC: B

PES	REC	Comments	Conf
С	В	Improved flows (higher low flows, less regulated flows) will improve quality and abundance of FS and FD habitats, with a positive impact on the FROC of some species with high preference for these habitats (especially CPAR, CPRE, LCON, LCYL, LMOL and OPER). Improved flows will inundate more reeds and more overhanging vegetation will become available, which will benefit species with a preference for this habitat type, with a possible improvement in the FROC of these species (BPAU, BRAD and BTRI).	4

F5.6 AEC: D

PES	AEC	Comments	Conf
В	D	Decreased low flows and periods of zero flow in some stretches will have a radical impact on flow dependant species (BEUT, CPRE, CSWI, OPER) and most probably also on species moderately intolerant to no flow conditions (BMAR, CPAR, LCON, LCYL, LMOL and MACU- and probably also HVIT). Loss of deep channels, becoming sandier shallow channel will affect especially species like HVIT and LCON negatively. Increased nutrients will further degrade the available substrate through excessive algal growth, affecting species with a preference for substrate of good quality. A further decrease in the FROC of BEUT, BMAR, CPAR, CPAR, CPRE, MACI and OPER can therefore be expected. Increased algal growth may benefit some a species like LCON. Further deterioration in water quality will result in decreased FROC and even absence of species intolerant to water quality alterations (MMAC, and possible loss of OPER).	4

F6 EWR 6: NKONGOMA (CROCODILE RIVER)

F6.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Dr. A Deacon)	4

F6.2 REFERENCE CONDITIONS

Information on the expected reference conditions at the NRHP site X2CROC-NKONG (EWR 6), as cited in Kleynhans *et al.* (2007) was used. The fish reference condition set should be valid for the Crocodile River stretch within NRU Croc I. Thirty four indigenous fish species are expected under reference conditions. Reference species detail is listed in Table F6.

Table F6 EWR 6: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 6 (Values used in FRAI) Observed species (HIGHLIGHTED)					
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC	
Acanthopagrus berda	Riverbream	ABER	2	1	
Anguilla bengalensis labiata	African mottled eel	ALAB	1	1	
Anguilla marmorata	Giant mottled eel	AMAR	2	1	
Anguilla mossambica	Longfin eel	AMOS	2	1	
Barbus annectens	Broadstriped barb	BANN	1	1	
Barbus afrohamiltoni	Hamilton's barb	BFRI	3	2	
Brycinus imberi	Imberi	BIMB	5	3	
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	4	
Barbus paludinosus	Goldie barb	BPAL	3	2	
Barbus radiatus	Beira barb	BRAD	3	2	
Barbus trimaculatus	Threespot barb	BTRI	4	3	
Barbus unitaeniatus	Longbeard barb	BUNI	3	2	
Barbus viviparous	Bowstripe barb	BVIV	5	4	
Clarias gariepinus	Sharptooth catfish	CGAR	4	3	
Chiloglanus paratus	Sawfin suckermouth (Rock catlet)	CPAR	5	3	
Chiloglanus pretotiae	Shortspine suckermouth (Rock catlet)	CPRE	1	1	
Chiloglanus swierstrai	Lowveld suckermouth (Rock catlet)	CSWI	4	3	
Glossogobius callidus	River goby	GCAL	2	1	
Glossogobius giurus	Tank goby	GGIU	5	4	
Hydrocynus vittatus	Tigerfish	HVIT	5	3	
Labeo congoro	Purple labeo	LCON	5	3	
Labeo cylindricus	Redeye labeo	LCYL	5	4	
Labeo molybdinus	Leaden labeo	LMOL	5	4	
Labeo rosae	Rednose labeo	LROS	4	3	
Labeo ruddi	Silver labeo	LRUD	1	1	
Micralestis acutidens	Silver robber	MACU	5	3	
Mesobola brevianalis	River sardine	MBRE	4	3	

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 6 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Marcusenius macrolepidotus	Bulldog	MMAC	4	2		
Oreochromus mossambicus	Mosambique tilapia	OMOS	5	5		
Petrocephalus wesselsi	Souther churchill	PWES	2	1		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	3	3		
Schilbe intermedius	Silver catfish	SINT	4	2		
Synodontis zambezensis	Brown squeaker	SZAM	3	1		
Tilapia rendalli	TREN	5	5			
FROC ratings: 0 = absent 3 = present at about >25 - 50% of sites 1 = present at very few sites (<10%)						

F6.3 PRESENT ECOLOGICAL STATE

F6.3.1 Site suitability

Site suitability in terms of assessment index	Habitat for small rheophilic species in adeque Fish habitats (velocity-depth categories a expected habitats of the RAU. Estimated that the site have slightly more fa than RAU, which should be considered in Fl	ate abundance and associated st-shallow and RAI application.	at site. cover) at site fairly similar to fast-deep and less slow-deep
	EWR suitability = 4.0 Site FRAI suitability = 3.0	Confidence	4.5

This PES for fish was determined for the stretch of the Crocodile River for NRU Croc I.

PES description	The PES indicates moderately deteriorated catchment upstream of this reach. Prin increased benthic algal growth and altered sugarcane). Most of the expected fish spec it in reduced abundance and spatial distribu- falling within the conservation area (KNP integrity of this section.	ecological intenary local imp water quality cies are howeven ution. The pres contribute to	egrity, reflective of all the impacts in the acts include increased sedimentation, related to agricultural activities (mostly er still present in this reach, although be sence the left bank and local catchment preservation of the overall ecological
	C (65.6%)	Confidence	4

F6.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Sedimentation of substrates.	Increased erosion related to agriculture, grazing and bank instability.		
С	Altered fish assemblage (loss in abundance, breeding and feeding success).	Altered water quality especially increased nutrients related to seepage from sugarcane/agriculture).	NF	
	Loss in natural habitat diversity (loss of deep pools due to sedimentation, loss of overhanging vegetation and undercut banks due to reduced flows).	Altered hydrological regime (especially as a result of abstraction for irrigation – primarily sugarcane).		4
	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (small weirs) impede on natural migration. Altered hydrological events delay/prevent natural migratory cues.		

F6.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The fish assemblage have adapted to the altered flow regime and modified water quality and should remain fairly stable over the long term should current conditions prevail.	3

F6.5 REC: B

PES	REC	Comments	Conf
С	В	Improved flows (higher low flows, less regulated flows) will improve quality and abundance of FS and FD habitats, with a positive impact on the FROC of some species with high preference for these habitats (especially AMOS, BMAR, CPAR, CSWI, HVIT and LCON). Improved flows will inundate more reeds and more overhanging vegetation will become available, which will benefit species with a preference for this habitat type as cover, with a possible improvement in the FROC of these species (BPAU, BRAD, BVIV, MMAC and MACU).	4

F6.6 AEC: D

PES	AEC	Comments	Conf
В	D	Decreased low flows and longer periods of zero flow in some stretches will have a radical impact on flow dependant species and result in decreased FROC of species as BMAR, CPAR, HVIT, LCON, LCYL, LMOL and MACU and a possible loss of CPRE, CSWI from this stretch under extreme conditions. Loss of deep channels, becoming sandier shallow channel will affect especially species like HVIT and LCON negatively. Increased nutrients will further degrade the available substrate through excessive algal growth, affecting species with a preference for substrate of good quality. A further decrease in the FROC of BMAR, CPAR, and GGIU can therefore be expected. Increased algal growth may benefit some a species like LCON. Impact on species with preference for substrate as cover will be aggravated by increased sedimentation as a result of fewer floods. Loss of overhanging, undercut banks and aquatic vegetation as a result of the decreased water levels will also negatively impact on the FROC of species with a high preference for these cover features (BPAU, BVIV, BTRI, BUNI, BVIV and MMAC).	4

F7 EWR 7: HONEYBIRD (KAAP RIVER)

F7.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during October 2007. Kleynhans et al. (2002): Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Dr. J. Engelbrecht)	4

F7.2 REFERENCE CONDITIONS

Information on the expected fish reference conditions at site X2KAAP-HONEY, as cited in Kleynhans *et al.* (2007) was used to determine the expected reference conditions. The fish reference condition set should be valid for the Kaap River stretch within NRU Kaap A. Seventeen indigenous fish species are expected under reference condition. Reference species detail is listed in Table F7.

Table F7 EWR 7: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 7 (Values used in FRAI) Observed species (HIGHLIGHTED)					
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC	
Anguilla mossambica	Longfin eel	AMOS	3	2	
Barbus eutaenia	Orangefin barb	BEUT	5	4	
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	5	
Barbus trimaculatus	Threespot barb	BTRI	5	5	
Barbus unitaeniatus	Longbeard barb	BUNI	5	5	
Barbus viviparous	Bowstripe barb	BVIV	5	5	
Clarias gariepinus	Sharptooth catfish	CGAR	3	3	
Chiloglanus paratus	Sawfin suckermouth (Rock catlet)	CPAR	4	4	
Chiloglanus pretoriae	Shortspine suckermouth (Rock catlet)	CPRE	5	4	
Chiloglanus swierstrai	Lowveld suckermouth (Rock catlet)	CSWI	3	2	
Labeo cylindricus	Redeye labeo	LCYL	4	4	
Labeo molybdinus	Leaden labeo	LMOL	4	4	
Labeo rosae	Rednose labeo	LROS	2	1	
Micralestis acutidens	Silver robber	MACU	3	3	
Opsaridium peringueyi	Southern barred minnow	OPER	3	2	
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	3	
Tilapia rendalli	Redbreast tilapia	TREN	3	2	
FROC ratings: 0 = absent 3 = present at about >25 - 50% of sites 1 = present at very few sites (<10%)					

F7.3 PRESENT ECOLOGICAL STATE

F7.3.1 Site suitability

Site suitability in terms of assessment	Habitat for small rheophilic species very well represented at site. Fish habitats (velocity-depth categories and associated cover) at site expected to be similar to estimated habitats of the RAU.					
index	EWR suitability = 4.5Confidence4Site FRAI suitability = 4.04					

This PES for fish was determined for the stretch of the Kaap River stretch within NRU Kaap A.

PES description	The PES reflects moderately deteriorated e regimes, forestry and agriculture. Most of this reach, although be it in reduced abunda	ecological integreated function that the expected function of the second spatial second secon	ity, related to impacts such altered flow ish species are however still present in distribution.
	C (76.8%)	Confidence	3.5

F7.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Loss in natural habitat diversity.	Altered hydrological regime.	F	
С	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (small weirs) impede on natural migration. Altered hydrological events delay/prevent natural migratory cues.	NF	3.5

F7.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The fish assemblage in this section of the Crocodile River have adapted to the altered flow regime and modified water quality and should remain fairly stable over the long term should current conditions prevail.	3

F7.5 REC: B

PES	REC	Comments	Conf
С	В	This scenario may result in improved FROC on a variety of species, including species with requirement for FS and FD habitats and those that are intolerant to no flow conditions (OPER, CPAR and BMAR). This may also lead to the more tolerant species utilising this section optimally, with their FROC returning close to natural state (BTRI, BUNI, and BVIV).	3

F7.6 AEC: D

PES	AEC	Comments	Conf
С	D	Altered hydrological regime, with much less flows (lower base flows) will lead to reduced riffle/rapid/run habitats, with reduced FROC of species with preference for FD and FS habitats (BEUT, BMAR, CPAR, CPRE, CSWI, LCYL, LMOL, MACU and OPER). This may even lead to the total loss of OPER from this section. With fewer floods the riffles will become sandier and negatively impact some species with a high preference for substrate of good quality (especially BEUT, CPRE). Degradation of overhanging vegetation will also result in decreased FROC of species with a preference for this cover type, i.e. BTRI, BUNI, BVIV and PPHI.	3

F8 EWR 1: UPPER SABIE (SABIE RIVER)

F8.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	3

F8.2 REFERENCE CONDITIONS

No specific fish reference condition information is available for the reach of the Sabie River where EWR 1 is situated. The closest site available with a defined reference condition is X3-Sabi-Brand (downstream of Mac-Mac River confluence), which was primarily used to derive the expected reference conditions and is valid for the Sabie River stretching from below the Sabie falls (downstream of Sabie town) to the confluence with the Mac-Mac River. Seven fish species are expected in this section of the Sabie River with all species expected to be naturally present at more than 50% of sites sampled in a reach. These species are listed in Table F8.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 1 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Anguilla mossambica	Longfin eel	AMOS	4	2		
Amphilius uranoscopus	Stargazer, mountain catfish	AURA	4	3		
Barbus anoplus	Chubbyhead barb	BANO	4	3		
Barbus brevipinnis	Shortfin barb	BBRE	4	3		
Chiloglanis anoterus	Rock catlet	CANO	5	5		
Tilapia sparrmanii	Banded tilapia	TSPA	4	3		
Varicorhinus nelspruitensis	Incomati chiselmouth	VNEL	5	5		
FROC ratings: 0 = absent 1 = present at very few sites (<10 2 = present at few sites (>10 - 25	3 = pr %) 4 = pr %) 5 = pr	esent at about >25 - esent at most sites (> esent at almost all sit	50% of sites •50 - 75%) es (>75%)			

Table F8EWR 1: Reference fish species

F8.3 PRESENT ECOLOGICAL STATE

F8.3.1 Site suitability

Site suitability in terms of assessment index	Habitat for large rheophilic (VNEL), as a limnophilic species. Limiting factor may be extensive forestry act sampling success. Fish habitats (velocity-depth categories an expected habitats of the RAU. Limiting factor is slightly less slow habitats comparison to RAU.	well as small tivities and agg nd associated s and slightly r	rheophilic, semi-rheophilic and ravated algal growth which limits cover) at site highly similar to more fast habits at EWR site in
	EWR suitability = 4.5 Site FRAI suitability = 4	Confidence	4

The PES was calculating for the section of Sabie River secondary NRU Sabie B.1 downstream of the Sabie falls (equates to WQSU 2).

PES description	The main changes to the reference fish assored uced flows and increased sedimentation however still present in this reach, althout distribution.	emblage can pi n. Most of the ugh at reduce	imarily be attributed to the expected fish species are dabundance and spatial
	B/C (78.3%)	Confidence	4

F8.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Abstraction	Forestry and Sabie town and small scale irrigation.	F	
B/C	Loss of habitat (decreased fast habitats and overhanging vegetation) diversity as a result of decreased base flows.	Alien vegetation encroachment.		3
	Increased sedimentation resulting in deterioration of substrate as habitat (clogging interstitial spaces, loss of important spawning habitats, etc.).	Hillslope erosion related to afforestation.	NF	

F8.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C		The fish assemblage in this section have adapted to the altered water quality and flows and should remain fairly stable over the long term should current conditions prevail.	4

F8.5 REC: B

PES	REC	Comments	Conf
B/C	В	Improvement of cover in the form of overhanging vegetation and undercut banks (overall riparian condition, decreased alien vegetation) and improved habitat for species preferring slow habitats will result in an improvement of the EC.	4

F8.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	Decreased low flows will result in reduced fast habitats (riffles, rapids, runs) with a resultant loss or decreased FROC of rheophilic and semi-rheophilic species (VNEL, AURA, CANO, BBRI). Increased sediments and nutrients will reduce quality of habitat in especially riffles and rapids (interstitial spaces) with negative impact on above-mentioned species. Increased temperatures may also affect FROC of species such as TSPA, VNEL, BBRI and BANO. Increased toxins will also have a significant impact as a large proportion of species is intolerant to modified water quality.	4

F9 EWR 2: AAN DE VLIET (SABIE RIVER)

F9.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. This site is a provincial RHP site with adequate historic and present data available. Weeks <i>et al.</i> (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. Rivers Database (2007): Database on fish distribution in South African Rivers. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	4

F9.2 REFERENCE CONDITIONS

No specific fish reference information is available for the EWR site or other site in this section of the Sabie River (Kleynhans *et al.*, 2007). The closest site with reference condition is the NHRP site, X3-Sabi-Brand, which was primarily used to derive the expected reference conditions for fish of EWR 1, higher up in the Sabie River. *Barbus argenteus* was added as this species was previously sampled in this reach (Kleynhans, 1997). The reference condition set for EWR 2 is valid for the Sabie River stretching from below the confluence with the Mac-Mac River to the confluence with the Marite River. This equates to secondary natural resource unit (S NRU) Sabie B.2 downstream of the of Sabie falls. Twenty-two fish species are expected in this section of the Sabie River and are listed in Table F9.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 2 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Anguilla mossambica	Longfin eel	AMOS	4	2		
Amphilius uranoscopus	Stargazer, mountain catfish	AURA	4	4		
Barbus argenteus	Rosefin barb	BARG	3	2		
Barbus brevipinnis	Shortfin barb	BBRE	4	1		
Barbus eutaenia	Orangefin barb	BEUT	5	5		
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	4		
Labeobarbus polylepis	Smallscale yellowfish	BPOL	5	4		
Barbus trimaculatus	Threespot barb	BTRI	5	3		
Barbus unitaeniatus	Longbeard barb	BUNI	4	2		
Chiloglanis anoterus	Rock catlet	CANO	5	5		
Clarias gariepinus	Sharptooth catfish	CGAR	4	4		
Chiloglanis paratus	Sawfin suckermouth	CPAR	3	2		
Chiloglanis swierstrai	Lowveld suckermouth	CSWI	4	4		
Labeo cylindricus	Redeye labeo	LCYL	4	2		
Labeo molybdinus	Leaden labeo	LMOL	4	2		
Micralestis acutidens	Silver robber	MACU	4	3		
Marcusenius macrolepidotus	Bulldog	MMAC	4	3		
Opsaridium peringueyi	Southern barred minnow	OPER	5	5		
Petrocephalus wesselsi	Southern churchill	PWES	4	2		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	3		
Tilapia sparrmanii	Banded tilapia	TSPA	4	3		

Table F9 EWR 2: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 2 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names Common Name Spp abbreviation Reference FROC Derive FROC						
Varicorhinus nelspruitensis	inus nelspruitensis Incomati chiselmouth		5	5		
FROC ratings: 3 = present at about >25 - 50% of sites 1 = present at very few sites (<10%)						

F9.3 PRESENT ECOLOGICAL STATE

F9.3.1 Site suitability

	Habitat for large rheophilic (VNEL), as	well as small	rheophilic, semi-rheophilic and
Site suitability in terms of assessment index	purposes. Fish habitats (velocity-depth ci similar to expected habitats of the RAU. I slightly more fast habits at EWR site in comp	ategories and imiting factor i parison to RAU	associated cover) at site highly s slightly less slow habitats and
	EWR suitability = 4.5 Site FRAI suitability = 3.5	Confidence	4

The PES was calculating for the section of Sabie River secondary NRU Sabie B.2.

PES description	The PES reflects slightly reduced condition	ns in terms of h	nabitat and substrate. This is primarily
	attributed to the reduced flows and increas	ed sedimentati	on. Most of the expected fish species
	are however still present in this reach, althou	ugh in reduced	abundance and spatial distribution.
	B/C (78.6%)	Confidence	4

F9.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
B/C	Abstraction.	Forestry and Sabie town and small scale irrigation.	F	
	Loss of habitat (decreased fast habitats and overhanging vegetation) diversity as a result of decreased base flows.	Alien vegetation encroachment.		
	Reduced migration success as a result of alteration of natural cues for migration and migration barriers.	Migration barriers (especially Corumanu dam, but also smaller weirs).	INF	3
	Potential water quality deterioration at times (diatoms indicate possible pollution events)	Agriculture and lodges.		
	Increased sedimentation result in deterioration of substrate as habitat.	Hillslope erosion related to afforestation.	INF	

F9.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C		The fish assemblage in this section have adapted to the altered water quality and flows and should remain fairly stable over the long term should current conditions prevail.	4

F9.5 REC: B

PES	REC	Comments	Conf
B/C	В	Improved riparian zone (marginal) conditions with adequate natural overhanging vegetation will improve conditions for species with high requirement for this habitat (slow shallow and deep with overhanging vegetation) such as BBRI, BTRI and BUNI.	4

F9.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	Deteriorated water quality will result in decreased FROC of species with requirement for high water quality, such as AURA, BARG, BEUT, CANO, and OPER. Decreased low flows (lower water levels) will lead to a loss in habitat diversity during these periods (reduction in riffle/rapid areas, decreased overhanging vegetation as cover as a result of decreased water level not reaching the edge of stream) with a resultant decrease in FROC for species preferring riffle/rapid/run (fast) habitats (AURA, BARG, BEUT, BMAR, BPOL, CANO, CPAR, OPER, and VNEL) and with high requirement for overhanging vegetation (BEUT, MMAC, PPHI, and TSPA).	4

F10 EWR 3: KIDNEY (SABIE RIVER)

F10.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. 1006 (ER eite information (Codfroy, 2002)	4

F10.2 REFERENCE CONDITIONS

The fish reference condition information, as set for the NRHP site X3-SABI-SEKUR (Kleynhans *et al.*, 2007) is directly applicable to EWR 3. The reference condition set, in the context of this study, is valid for the Sabie River within secondary NRU Sabie C.1. Thirty five fish species can be expected in this section of the Sabie River under natural conditions. Expected species are listed in Table F10.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 3 (Values used in FRAI) Observed species (HIGHLIGHTED) Derived Spp Reference **Scientific Names Common Name** abbreviation FROC FROC Anguilla mossambica AMOS Longfin eel 2 1 Amphilius uranoscopus Stargazer, mountain catfish AURA 1 1 BANN Broadstriped barb Barbus annectens 3 3 Barbus argenteus Rosefin barb BARG 1 0 Barbus eutaenia Orangefin barb BEUT 4 4 Barbus afrohamiltoni Hamilton's barb BFRI 1 1 BIMB 1 1 Brvcinus imberi Imberi Labeobarbus marequensis Largescale yellowfish **BMAR** 5 5 Barbus paludinosus Goldie barb BPAU 2 2 Barbus radiatus Beira barb BRAD 3 3 Barbus toppini BTOP 1 1 4 4 BTRI Barbus trimaculatus Threespot barb BUNI 4 4 Barbus unitaeniatus Longbeard barb Barbus viviparous Bowstripe barb **BVIV** 5 5 4 4 Chiloglanis anoterus Rock catlet CANO Clarias gariepinus Sharptooth catfish CGAR 4 4 CPAR Chiloglanis paratus Sawfin suckermouth 4 3 Chiloglanis swierstrai Lowveld suckermouth CSWI 4 4 Hydrocynus vittatus Tigerfish HVIT 1 1 LCON 2 2 Labeo congoro Purple labeo LCYL 5 5 Labeo cylindricus Redeye labeo 5 LMOL 5 Labeo molybdinus Leaden labeo Rednose labeo LROS 4 4 Labeo rosae Silver robber MACU 5 5 Micralestis acutidens MBRE 5 5 Mesobola brevianalis River sardine Marcusenius macrolepidotus Bulldog MMAC 4 3

Table F10 EWR 3: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 3 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Oreochromus mossambicus	Mozambique tilapia	OMOS	5	5		
Opsaridium peringueyi	Southern barred minnow	OPER	5	4		
Petrocephalus wesselsi	Southern churchill	PCAT	2	1		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	4		
Schilbe intermedius	Silver catfish	SINT	4	3		
Serranochromus meridianus	Lowveld largemouth	SMER	5	4		
Synodontis zambezensis	Brown squeaker	SZAM	1	1		
Tilapia rendalli	Redbreast tilapia	TREN	5	5		
Tilapia sparrmanii	Banded tilapia	TSPA	2	2		
FROC ratings: 0 = absent 1 = present at very few sites (<10 2 = present at few sites (>10 - 25	FROC ratings: 3 = present at about >25 - 50% of sites 1 = present at very few sites (<10%)					

F10.3 PRESENT ECOLOGICAL STATE

F10.3.1 Site suitability

Site suitability in	Habitat for small rheophilic species well represented at site. Fish habitats (velocity-depth categories and associated cover) at site slightly different from			
terms of assessment	RAU, and should be considered during application of results to FRAI.			
index	EWR suitability = 4.5 Site FRAI suitability = 2.5	Confidence	4	

The PES was calculating for the section of Sabie River within secondary natural resource unit (NRU) Sabie C.1 (MRU B.1).

PES description	The PES reflects slightly reduced conditions sedimentation and increased algal growth. present in this reach, although in reduced al conservation area (KNP) improves the ecolog impacts.	s, primarily attri Most of the ex oundance and s gical integrity of	buted to the reduced flows, increased spected fish species are however still spatial distribution. The presence of a this section and limits local catchment
	B (85.6%)	Confidence	4

F10.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Abstraction.	Forestry and Sabie town and small scale irrigation.		
	Reduced migration success as a result of alteration of natural cues for migration and presence of migration barriers.	Migration barriers (especially Corumanu Dam, but also smaller weirs, up- and downstream and within the reach).	F	
В	Loss of habitat (decreased fast habitats and overhanging vegetation) diversity as a result of decreased base flows.	Alien vegetation encroachment.		3
	Increased sedimentation and excessive algal growth result in deterioration of substrate as habitat and loss of deep habitats.	Hillslope erosion related, especially attributed to small-scale farming on one bank and increased nutrients.		

F10.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The fish assemblage in this section have adapted to the altered	4
<u> </u>			_		

		water quality and flows and should remain fairly stable over the	
		long term should current conditions prevail.	

F10.5 AEC: B/C

PES	AEC	Comments	Conf
В	С	Rheophilic and semi rheophilic species, with a preference for FS and FD habitats and species that are intolerant to no flow conditions (BEUT, BMAR, CANO, CSWI, LCYL and OPER) will be affected. Decreased water quality will further affect species intolerant to water quality change (e.g. BEUT, CANO, OPER, MACU and MMAC). Deterioration of substrates (increased sediment) will further decrease FROC of species with high preference for this habitat (BMAR, CANO, and CPAR). Loss of SD habitats will decrease FROC of LCON and SINT.	3

F11 EWR 4: MAC MAC (MAC MAC RIVER)

F11.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	3

F11.2 REFERENCE CONDITIONS

No specific fish reference condition information is available for the EWR 4 (Kleynhans *et al.*, 2007). The closest site with reference condition information is site X3MACM-BRAND closer to the confluence of the Mac Mac and Sabie River. This reference condition was primarily used to derive the expected reference conditions for fish with emphasis being placed on the fish species that can be expected in habitat compositions in the vicinity of site EWR 4. The reference NRHP site X3MACM-BRAN is very close to the confluence of the Sabie River and may be influenced by some fish species from the Sabie River that frequent the lower reaches of the Mac Mac river from time to time, but does not necessarily utilise the entire reach (within EcoRegion 4.04) of the Mac-Mac River. The reference condition set, is valid for the Mac-Mac River falling within EcoRegion 4.04. Twelve fish species are expected to have inhabited this section of the river under natural condition and are listed in Table F11.

Expected Re	Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 4 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC				
Anguilla mossambica	Longfin eel	AMOS	4	2				
Amphilius natalensis	Natal mountain catfish	ANAT	1	1				
Amphilius uranoscopus	Stargazer, mountain catfish	AURA	4	4				
Barbus brevipinnis	Shortfin barb	BBRI	4	2				
Barbus eutaenia	Orangefin barb	BEUT	5	4				
Labeobarbus polylepis	Smallscale yellowfish	BPOL	1	1				
Chiloglanis anoterus	Rock catlet	CANO	5	5				
Clarias gariepinus	Sharptooth catfish	CGAR	4	4				
Opsaridium peringueyi	Southern barred minnow	OPER	5	3				
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	3				
Tilapia sparrmanii	Banded tilapia	TSPA	4	3				
Varicorhinus nelspruitensis	Incomati chiselmouth	VNEL	5	5				
FROC ratings: 0 = absent 1 = present at very few sites (<10 2 = present at few sites (>10 - 25	3 = pres 0%) 4 = pres 5%) 5 = pres	sent at about >25 - 5 sent at most sites (> sent at almost all site	50% of sites 50 - 75%) es (>75%)					

Table F11 EWR 4: Reference fish species

F11.3 PRESENT ECOLOGICAL STATE

F11.3.1 Site suitability

Site suitability in terms of assessment	Habitat for large rheophilic (VNEL), as well a Limiting factor may be extensive forestry act Fish habitats (velocity-depth categories a expected habitats of the RAU.	as small rheoph tivities. nd associated	ilic, well represented at site. cover) at site highly similar to				
muex	Limiting factor may be slightly less deep hat	niais anu vegei	allon as cover.				
	EWR suitability = 4.5Confidence4Site FRAI suitability = 4.04						

The PES was calculating for the section of Mac-Mac River falling within ecoregion 4.04.

PES description	The PES reflects slightly deteriorated ecolo and increased sedimentation, the primary expected fish species are however still pres spatial distribution.	gical integrity, source of det sent in this read	primarily attributed to the reduced flows erioration being forestry. Most of the ch, although in reduced abundance and
	B/C (80.4%)	Confidence	4

F11.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Loss of fish habitat diversity (decreases fast habitats, overhanging vegetation and undercut banks) as a result of decreased base flows.	Primarily afforestation.	F	
B/C	Reduced migration success as a result of migration barriers (primarily downstream).	Migration barriers (especially Corumanu dam, but also smaller weirs).		3
	Increased sedimentation result in deterioration of substrate as habitat and loss of deep habitats.	Hillslope erosion related to afforestation.		

F11.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C		The fish assemblage in this section have adapted to the altered water quality and flows and should remain fairly stable over the long term should current conditions prevail.	4

F11.5 REC: A/B

PES	REC	Comments	Conf
B/C	В	Improved water quality should result in improved frequency of occurrence of species with requirement for high water quality, namely BBRI and OPER, species currently present in reduced frequency of occurrence.	4

F11.6 AEC: C

PES	AEC	Comments	Conf
B/C	C/D	Decreased low flows will result in reduced fast habitats (riffles, rapids, runs) with a resultant loss or decreased FROC of rheophilic and semi-rheophilic species (VNEL, BEUT, AURA, CANO, and OPER). Embeddedness of cobbles and nutrient increases will reduce quality of habitat especially in riffles and rapids (interstitial spaces) with negative impact on above-mentioned species. Increased temperatures and resultant decreased oxygen will also affect FROC of above mentioned species. Increased alien vegetation will reduce bank stability and decrease overhanging vegetation, impacting on species with high requirement for this cover type, i.e. BBRI, BEUT, TSPA and PPHI.	4

F12 EWR 5: MARITE (MARITE RIVER)

F12.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	4

F12.2 REFERENCE CONDITIONS

The reference condition as set for the NRHP site X3-MARI-SANDF (Kleynhans *et al.*, 2007) is directly applicable to site EWR 5. One fish species, namely *Barbus brevipinnis* (BBRI) was added to the list of fish species expected under natural conditions, as this species was sampled at this site during 1997 (Kleynhans Fish Database). The reference condition is, in the context of this study, valid for the section of the Marite River within EcoRegion 4.04. Twenty three fish species can be expected in this section and are listed in Table F12.

	Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 5 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC				
Anguilla marmorata	Giant mottled eel	AMAR	2	1				
Anguilla mossambica	Longfin eel	AMOS	3	2				
Amphilius natalensis	Natal mountain catfish	ANAT	3	1				
Amphilius uranoscopus	Stargazer, mountain catfish	AURA	4	4				
Barbus brevipinnis	Shortfin barb	BBRI	1	1				
Barbus eutaenia	Orangefin barb	BEUT	4	4				
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	4				
Barbus trimaculatus	Threespot barb	BTRI	4	3				
Barbus unitaeniatus	Longbeard barb	BUNI	4	2				
Chiloglanis anoterus	Rock catlet	CANO	5	5				
Clarias gariepinus	Sharptooth catfish	CGAR	4	4				
Chiloglanis paratus	Sawfin suckermouth	CPAR	3	2				
Chiloglanis swierstrai	Lowveld suckermouth	CSWI	2	2				
Labeo cylindricus	Redeye labeo	LCYL	1	1				
Labeo molybdinus	Leaden labeo	LMOL	3	3				
Micralestis acutidens	Silver robber	MACU	3	2				
Marcusenius macrolepidotus	Bulldog	MMAC	4	4				
Oreochromus mossambicus	Mozambique tilapia	OMOS	3	2				
Opsaridium peringueyi	Southern barred minnow	OPER	4	3				
Petrocephalus wesselsi	Southern churchill	PCAT	3	1				
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	4				
Tilapia sparrmanii	Banded tilapia	TSPA	4	4				
Varicorhinus nelspruitensis	Incomati chiselmouth	VNEL	4	2				

Table F12 EWR 5: Reference fish species
Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 5 (Values used in FRAI) Observed species (HIGHLIGHTED)					
Scientific Names	Common Name Spp abbreviation Reference FROC Derived FROC				
2 = present at few sites (>10 - 25%)	5 present at almost all sites (>75%)				

F12.3 PRESENT ECOLOGICAL STATE

F12.3.1 Site suitability

Site suitability in terms of assessment index	Habitat for large rheophilic (VNEL), as well as small rheophilic, well represented at site. Limiting factor may be livestock farming activities impacting on fish habitat. Fish habitats (velocity-depth categories and associated cover) at site very similar to expected habitats of the RAU.			
	EWR suitability = 4.0 Site FRAI suitability = 3.5	Confidence	4	

The PES was calculating for the section of Marite River within Ecoregion 4.04 lying downstream of the Inyaka dam.

PES description	The PES reflects deteriorated ecological ir	ntegrity primaril	y attributed to the altered hydrological
	regime, (operation of Inyaka Dam), increas	ed sedimentation	on (overgrazing, rural areas) and slight
	deterioration in water quality. Most of the	expected fish s	pecies are however still present in this
	reach, although be it in reduced abundance	and spatial dist	ribution.
	B/C (77.9%)	Confidence	4

F12.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Increased sedimentation result in deterioration of substrate as habitat and loss of deep habitats.	Increased sedimentation from hillslope erosion related to rural areas (over grazing, small-scare agriculture, and informal settlements) as well as changed flow regime	NF/F	
	Loss of fish habitat diversity Flow modification related to Inyaka Dam.			
B/C	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (especially Corumanu and Inyaka Dam, but also smaller weirs) impede natural migration. Altered moderate and large hydrological events as result of Inyaka dam can delay/prevent natural migratory cues).	F	3

F12.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Negative	С	Long term	It can be expected that the fish assemblage is still adapting to the major alteration in hydrological regimes brought about by the construction of the Inyaka Dam.	3

F12.5 REC: B

PES	REC	Comments	Conf
B/C	В	An improved flow regime (close to natural regime) will improve habitat diversity and abundance, with a resultant improved FROC of species such as ANAT, BUNI and VNEL.	4

F12.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	Water quality deterioration (more nutrients, toxics, less dilution) will lead to decreased FROC of water quality intolerant and moderately intolerant species (AURA, BEUT, CANO, CSWI, LMOL, MMAC, and OPER). No releases for the EWR will result in loss of habitat diversity, reflected by reduced FROC of most expected species. It will also affect the migratory cues, impacting negatively on species migrating between reaches (especially BMAR, CGAR, TSPAR, and VNEL). Increased sediment will reduce the quality of substrate as habitat through embeddedness, impacting on species with high preference for substrates (BEUT, CPAR and LMOL). Reduced marginal vegetation related to riparian zone degradation will result in decreased FROC of species with high requirements for overhanging vegetation (BEUT, BTRI, BUNI, MMAC, and PPHI).	4

F13 EWR 6: MUTLUMUVI (MUTLUMUVI RIVER)

F13.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Angliss and Rodgers, 2002: Sand River Catchment Biomonitoring Report. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Mr. M. Angliss)	3

F13.2 REFERENCE CONDITIONS

The reference condition as set for the NHRP site X3MUTL-THULA (Kleynhans *et al.*, 2007) was applied for the determination of the reference condition. AMOS was added to the list of fish species expected under natural conditions, as this species was sampled at this site during 1997 (Kleynhans Fish Database). The reference condition set is, in the context of this study, valid for the section of the Mutlumuvi River within EcoRegion 3.07, which equates secondary natural resource unit MUT A.3. Twenty nine fish species can be expected in this section and are listed in Table F13.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 6 (Values used in FRAI) Observed species (HIGHLIGHTED)				
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC
Anguilla mossambica	Longfin eel	AMOS	1	1
Barbus annectens	Broadstriped barb	BANN	4	3
Barbus eutaenia	Orangefin barb	BEUT	4	3
Barbus afrohamiltoni	Hamilton's barb	BFRI	3	1
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	4
Barbus paludinosus	Goldie barb	BPAU	4	2
Barbus radiatus	Beira barb	BRAD	4	2
Barbus toppini		BTOP	4	2
Barbus trimaculatus	Threespot barb	BTRI	5	4
Barbus unitaeniatus	Longbeard barb	BUNI	5	3
Barbus viviparous	Bowstripe barb	BVIV	5	4
Chiloglanis anoterus	Rock catlet	CANO	5	4
Clarias gariepinus	Sharptooth catfish	CGAR	4	4
Chiloglanis paratus	Sawfin suckermouth	CPAR	5	4
Chiloglanis swierstrai	Lowveld suckermouth	CSWI	5	3
Glossogobius callidus	River goby	GCAL	3	2
Glossogobius giurus	Tank goby	GGIU	5	3
Labeo cylindricus	Redeye labeo	LCYL	5	3
Labeo molybdinus	Leaden labeo	LMOL	5	4
Micralestis acutidens	Silver robber	MACU	5	4
Mesobola brevianalis	River sardine	MBRE	5	4
Marcusenius macrolepidotus	Bulldog	MMAC	4	3
Oreochromus mossambicus	Mozambique tilapia	OMOS	5	5

Table F13 EWR 6: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 6 (Values used in FRAI) Observed species (HIGHLIGHTED)					
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC	
Opsaridium peringueyi	Southern barred minnow	OPER	4	1	
Petrocephalus wesselsi	Southern churchill	PCAT	4	2	
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	4	
Schilbe intermedius	Silver catfish	SINT	3	2	
Serranochromus meridianus	Lowveld largemouth	SMER	3	2	
Tilapia rendalli	Redbreast tilapia	TREN	4	4	
FROC ratings: 0 = absent 1 = present at very few sites (<10%) 2 = present at few sites (>10 - 25%)	3 = present at about >25 - 50% of sites) 4 = present at most sites (>50 - 75%) 5 = present at almost all sites (>75%)				

F13.3 PRESENT ECOLOGICAL STATE

F13.3.1 Site suitability

Site suitability in terms of assessment index	Habitat for small rheophilic species and some semi-rheophilic species well represented at site. Fish habitats (velocity-depth categories and associated cover) at site expected to be similar to expected habitats of the RAU.			
	EWR suitability = 3.0 Site FRAI suitability = 3.5	Confidence	4	

The PES was calculating for the section of Mutlumuvi River within ecoregion 3.08.

PES description	The PES reflects deteriorated ecological in regime (serious increase in zero flow durat moderate events), extensive sedimentation quality. Most of the expected fish species reduced abundance and spatial distribution affected negatively.	tegrity, primaril ion, large char (overgrazing, a are however n. Rheophilic a	ly attributed to the altered hydrological age in low flows and small alteration in rural areas) and deterioration in water still present in this reach, although in nd semi-rheophilic species have been				
	C (69.2%) Confidence 4						

F13.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Reduced migration success as a result of migration barriers and altered migratory cues.	Migration barriers (especially Corumanu Dam, but also smaller weirs) impede natural migration. Altered hydrological events delay/prevent natural migratory cues.	NF	
С	Loss of fish habitat diversity (especially FS and FD habitat).	Flow modification and abstraction.	F	
	Increased sedimentation and benthic growth result in deterioration of substrate as habitat.	Hillslope erosion related to rural areas (over grazing, small-scare agriculture, informal settlements). Increased nutrients result in aggregated benthic growth.	NF	
	Increased pressure on fish assemblage.	Large scale harvesting take place with use of nets.		
	Local fish habitats are altered and deteriorated.	Solid waste disposal.		

F13.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The fish assemblage in this section have adapted to the altered water quality and flows and should remain fairly stable over the long	3

		term should current conditions prevail.	

F13.5 REC: B

PES	REC	Comments	Conf
С	В	Improved flow management (release of EWR, increased low flows, decreased zero flows) will improve the FROC of at least some species with preference of FS and FD, as well as species intolerant to no flow (e.g. BEUT, BMAR, CSWI, LCYL, and OPER). Improved substrate condition (reduced sedimentation) will further improve the habitat quality of the above mentioned species.	3

F13.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	Deteriorated flow management will decrease the FROC of at least some species with preference of FS and FD, as well as species intolerant to no flow (e.g. BEUT, BMAR, CSWI, and LCYL). Flow intolerant species such as OPER may even be lost under such conditions, although they may recolonise from downstream section during favourable conditions. Deteriorated substrate condition (increased sedimentation and excessive algal growth) will further contribute to the loss or decreased FROC of the above mentioned species.	3

F14 EWR 7: TLULANDZITEKA (TLULANDZITEKA RIVER)

F14.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Angliss and Rodgers, 2002: Sand River Catchment Biomonitoring Report. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Regional specialist input (Mr. M. Angliss)	3

F14.2 REFERENCE CONDITIONS

The fish reference condition information as set for NHRP site X3Mutl-Thula (Kleynhans *et al.*, 2007) was applied for the determination of the reference condition. One fish species, namely *Anguilla mossambica* (AMOS) was added to the list of fish species expected under natural conditions, as this species was sampled at this site during 1997 (Kleynhans Fish Database). The reference condition set, is in the context of this study, valid for the section of the Tlulandziteka River within EcoRegion 3.07, which equates secondary NRU Thul A.3. Twenty-eight fish species can be expected in this section of the Tlulandziteka River under natural conditions and is listed in Table F14.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 7 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Anguilla mossambica	Longfin eel	AMOS	2	1		
Barbus annectens	Broadstriped barb	BANN	4	2		
Barbus anoplus	Chubbyhead barb	BANO	3	2		
Barbus brevipinnis	Shortfin barb	BBRI	3	1		
Barbus eutaenia	Orangefin barb	BEUT	4	3		
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	4		
Barbus neefi	Sidespot barb	BNEE	3	2		
Barbus paludinosus	Goldie barb	BPAU	4	3		
Barbus radiatus	Beira barb	BRAD	4	3		
Barbus trimaculatus	Threespot barb	BTRI	5	4		
Barbus unitaeniatus	Longbeard barb	BUNI	5	4		
Barbus viviparous	Bowstripe barb	BVIV	5	4		
Chiloglanis anoterus	Rock catlet	CANO	5	4		
Clarias gariepinus	Sharptooth catfish	CGAR	4	4		
Chiloglanis paratus	Sawfin suckermouth	CPAR	5	3		
Chiloglanis swierstrai	Lowveld suckermouth	CSWI	5	2		
Labeo cylindricus	Redeye labeo	LCYL	5	2		
Labeo molybdinus	Leaden labeo	LMOL	5	3		
Micralestis acutidens	Silver robber	MACU	5	3		
Mesobola brevianalis	River sardine	MBRE	5	3		
Marcusenius macrolepidotus	Bulldog	MMAC	4	2		
Oreochromus mossambicus	Mozambique tilapia	OMOS	5	5		

Table F 14 EWR 7: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 7 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC			
Opsaridium peringueyi	Southern barred minnow	OPER	4	2			
Petrocephalus wesselsi	Southern churchill	PCAT	4	1			
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	3			
Schilbe intermedius	Silver catfish	SINT	3	1			
Serranochromus meridianus	Lowveld largemouth	SMER	3	2			
Tilapia rendalli	Redbreast tilapia	TREN	4	3			
FROC ratings: 0 = absent 1 = present at very few sites (<10%) 2 = present at few sites (>10 - 25%)	3 = presen 4 = presen 5 = presen	t at about >25 - 50% c t at most sites (>50 - 7 t at almost all sites (>7	of sites 75%) 75%)				

F14.3 PRESENT ECOLOGICAL STATE

F14.3.1 Site suitability

Site suitability in terms of assessment	Habitat for small rheophilic species and sor site. Fish habitats (velocity-depth categories and to expected habitats of the RAU.	me semi-rheop associated cov	hilic species well represented at ver) at site expected to be similar
Index	EWR suitability = 3.0 Site FRAI suitability = 3.5	Confidence	4

The PES was calculating for the section of Tlulandziteka River within ecoregion 3.08.

PES description	The PES reflects deteriorated ecological attributed to the altered hydrological regime low flows and small alteration in moderate areas) and deterioration in water quality. present in this reach, although be it in reduc semi-rheophilic species have been affected	integrity, base (serious increas e events), exter Most of the e ced abundance negatively.	ed on the fish assemblage, primarily se in zero flow duration, large change in nsive sedimentation (overgrazing, rural xpected fish species are however still and spatial distribution. Rheophilic and
	C (65.4%)	Confidence	3

F14.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf	
	Loss of fish habitat diversity (especially FS and FD).	Flow modification and abstraction.			
	Reduced migration success as a result of migration barriers and altered migratory cues.	uced migration success as a result of ation barriers and altered migratory cues. Migration barriers (especially Corumanu dam, but also smaller weirs) impede natural migration. Altered hydrological events delay/prevent natural migratory cues.			
С	Increased sedimentation and benthic growth result in deterioration of substrate as habitat.	Hillslope erosion related to rural areas (over grazing, small-scare agriculture, informal settlements). Increased nutrients result in aggregated benthic growth.	NF	3	
	Increased pressure on fish assemblage, especially if large scale harvesting takes place.	Fishing (with nets).			
	Local fish habitats are altered and deteriorate.	Solid waste disposal.			

F14.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The fish assemblage in this section has adapted to the altered water quality and flows and should remain fairly stable over the long term.	3

F14.5 AEC: B

PES	AEC	Comments	Conf
С	В	Improved flows will result in more FD and FS habitats, improving the current FROC of species with preference for fast habitats (CPAR, CSWI, LCYL, LMOL, and OPER). This will also improve conditions for species sensitive to no flows, such as BBRI and CSWI. Improved water quality will be reflected by improved FROC of BEUT, CANO, MACU, MMAC and PCAT. General improvement in the riparian zone condition should result in improved overhanging vegetation as cover with a resultant increase in the FROC of species such as BBIV.	3

F14.6 AEC: D

PES	AEC	Comments	Conf
С	D	Reduced flows and increased zero flows will reduce FS and FD habitat and also lead to loss of flow intolerant and moderately flow intolerant species (BEUT, BMAR, CANO, CPAR, CSWI, LCYL, and LMOL) and probably the complete eradication of OPER. Reduced water quality will lead to further pressure on the water quality intolerant species. Deterioration in substrates as a result of sedimentation and benthic algae will lead to decreased FROC of BNEE, BEUT, BMAR, <i>Chiloglanis</i> and <i>Labeo</i> spp. Deterioration in riparian zone with decreased overhanging vegetation will be reflected by decreased FROC of species such as BANO, BNEE, BPAU, BRAD, BTRI, BUNI and BVIV.	3

F15 EWR 8: LOWER SAND (SAND RIVER)

F15.1 DATA AVAILABILITY

Data availability	Conf
Single site visit and fish sampling during September 2007. Angliss and Rodgers, 2002: Sand River Catchment Biomonitoring Report. Rivers Database (2007): Database on fish distribution in South African Rivers. Weeks et al. (1996): A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Deacon (2007): Fish Database of Kruger National Park Rivers (1960 to present).	4

F15.2 REFERENCE CONDITIONS

The reference as set for NRHP site X3SAND-SKUKU (Kleynhans *et al.*, 2007) was directly applicable as reference condition for EWR 8. GCAL was added to the list of fish species expected under natural conditions, as this species was sampled at this site during 1997 (Kleynhans Fish Database). The reference condition set is, in the context of this study, valid for the section of the Sand River within RAU S and B.1. Thirty fish species can be expected in this section and are listed in Table F15.

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 8 (Values used in FRAI) Observed species (HIGHLIGHTED)							
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC			
Anguilla marmorata	Giant mottled eel	AMAR	1	1			
Anguilla mossambica	Longfin eel	AMOS	1	1			
Barbus annectens	Broadstriped barb	BANN	4	3			
Barbus afrohamiltoni	Hamilton's barb	BFRI	3	3			
Brycinus imberi	Imberi	BIMB	4	3			
Labeobarbus marequensis	Largescale yellowfish	BMAR	5	5			
Barbus radiatus	Beira barb	BRAD	3	3			
Barbus toppini		BTOP	3	3			
Barbus trimaculatus	Threespot barb	BTRI	5	5			
Barbus unitaeniatus	Longbeard barb	BUNI	3	3			
Barbus viviparous	Bowstripe barb	BVIV	5	5			
Chiloglanis anoterus	Rock catlet	CANO	2	1			
Clarias gariepinus	Sharptooth catfish	CGAR	4	4			
Chiloglanis paratus	Sawfin suckermouth	CPAR	4	2			
Chiloglanis swierstrai	Lowveld suckermouth	CSWI	4	2			
Glossogobius callidus	River goby	GCAL	2	2			
Glossogobius giurus	Tank goby	GGIU	3	2			
Labeo cylindricus	Redeye labeo	LCYL	5	4			
Labeo molybdinus	Leaden labeo	LMOL	5	4			
Labeo rosae	Rednose labeo	LROS	3	3			
Micralestis acutidens	Silver robber	MACU	4	4			
Mesobola brevianalis	River sardine	MBRE	3	3			
Marcusenius macrolepidotus	Bulldog	MMAC	4	3			
Oreochromus mossambicus	Mozambique tilapia	OMOS	5	5			

Table F 15 EWR 8: Reference fish species

Expected Reference and Habitat derived Frequency of Occurrence (FROC) of fish at EWR 8 (Values used in FRAI) Observed species (HIGHLIGHTED)						
Scientific Names	Common Name	Spp abbreviation	Reference FROC	Derived FROC		
Opsaridium peringueyi	Southern barred minnow	OPER	2	1		
Petrocephalus wesselsi	Southern churchill	PCAT	2	1		
Pseudocrenilabrus philander	Southern mouthbrooder	PPHI	4	4		
Schilbe intermedius	Silver catfish	SINT	3	3		
Serranochromus meridianus	Lowveld largemouth	SMER	3	3		
Tilapia rendalli	Redbreast tilapia	TREN	5	5		
FROC ratings: 0 = absent 1 = present at very few sites (<10%) 2 = present at few sites (>10 - 25%)	3 = present at about 4 = present at most s 5 = present at almost	>25 - 50% of sites sites (>50 - 75%) t all sites (>75%)				

F15.3 PRESENT ECOLOGICAL STATE

F15.3.1 Site suitability

Site suitability in terms of assessment	During flowing conditions, habitat for small rheophilic species will be present at site. Fish habitats (velocity-depth categories and associated cover) at site expected to be similar to expected habitats of the RAU.		
index	EWR suitability = 2.5 Site FRAI suitability = 3.0	Confidence	4

The PES was calculating for the section of the Sand River within resource assessment unit (RAU) Sand B.1.

PES description	The PES reflects slightly deteriorated ecolo attributed to the slightly altered hydrologic (overgrazing in rural areas of upper catchm the expected fish species are however still and spatial distribution. The majority of this to general good ecological integrity.	gical integrity, t al regime (low nent) and slight present in this reach lies withi	based on the fish assemblage, primarily flows), some increased sedimentation deterioration in water quality. Most of reach, although in reduced abundance n conservation areas, which contributed
	B (86.8%)	Confidence	4

F15.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf	
В	Slightly altered low flows reduce FS habitats.	Abstraction, livestock watering.	F		
	Reduced migration success as a result of migration barriers. and	Migration barriers (especially Corumanu dam, but also smaller weirs) impede natural migration.	NF		
	Altered migratory cues.	Altered hydrological events delay/prevent natural migratory cue.	F	4.5	
	Increased sedimentation and benthic growth result in deterioration of substrate as habitat. Sedimentation transforms deep habitats to shallow habitats.	Hillslope erosion in catchment (over grazing, small-scare agriculture, informal settlements). Increased nutrients result in slightly aggregated benthic growth.	NF		

F15.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The fish assemblage in this section has adapted to the altered water quality and flows and should remain fairly stable.	3

F15.5 AEC: C

PES	AEC	Comments	Conf
В	С	The scenario will result in decreased FROC of species with preference for FS and FD habitats (BMAR, CPAR, LCYL, LMOL, and MACU), and a complete loss in species intolerant to no flow conditions (CANO, CSWI, OPER, and HVIT).	4

F16 REFERENCES

Angliss, M. and Rodgers, S. 2002. Sand River Catchment Biomonitoring Report. Northern Province Environmental Affairs unpublished internal report. Polokwane, South Africa.

Deacon, A. 2007. Fish Database of Kruger National Park Rivers (1960 to present). SANParks internal database, Skukuza, South Africa.

Kleynhans, C.J., Engelbrecht, J.S. and Roux, F. 2002. Ecological importance and sensitivity, fish integrity and indicators of fish ecological reserve requirements. Report for the Ecological Reserve Determination for the Crocodile River Catchment, Pretoria, South Africa.

Kleynhans, C.J., Louw, M.D. and Moolman, J. 2007b. Reference frequency of occurrence of fish species in South Africa. Report produced for the Department of Water Affairs and Forestry (Resource Quality Services) and the Water Research Commission.

Rivers Database. 2007. Database on fish distribution in South African Rivers.

Weeks, D.C., O'Keefe, J.H., Fourie, A. & Davies, B.R. 1996. A Pre-impoundment Study of the Sabie-Sand River System, Mpumalanga with special reference to predicted impacts on the Kruger National Park. WRC Report Nr. 294/1/96.

Water Research Commission (WRC). 2001. State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Report produced by Water Research Commission, Pretoria, South Africa.

APPENDIX G: MACROINVERTEBRATES

C Thirion and C Todd, DWAF: RQS AC Uys, Laughing Waters P Vos, Jeffares and Green

G1 EWR 1: VALEYSPRUIT (CROCODILE RIVER)

G1.1 DATA AVAILABILITY

Data availability Cor	Conf
 Invertebrate data and analysis from a single sampling trip to the site on 5 October 2007 (two sets of samples). Historical Invertebrate data from the Rivers Database for sites X2LUNS-KRUIS. X2CROC-VALYS (the EWR site), X2CROC-DONKE. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Specialist assessments for this study. Hydrological assessment (HAI) by Prof Denis Hughes IHI assessment by Delana Louw Diatom Assessment by Shael Koekemoer Geomorphological Assessment Index by Mark Rountree Vegetation Assessment Index by James McKenzie Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. 	4

G1.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 240, with more than 35 taxa and an ASPT of 7.5.	3

G1.3 PRESENT ECOLOGICAL STATE

	SASS5 score: 215 No of T	axa: 34	ASPT: 6.3	
PES description	The macroinvertebrate assemblage reflect primarily to land use activities resulting in habitats with coinciding water quality p disappearance of the stoneflies (Perlidae) sensitive flow dependent taxa were collet (SOOC) and gravel-sand-mud (GSM) habit High scoring taxa in the former Prosopistomatidae, Psephenidae, and Athe	ts slightly dete decreased low roblems. This and the cobble ected in stones ats, while veget biotopes inclu ricidae.	riorated ecological in v flows and sediment s can be seen mos dwelling Chlorocyphic -in-current (SIC), stor ation harboured the m ude Heptageniidae,	tegrity, attributed ation of instream at clearly in the I mayflies. Many nes-out-of-current ore resilient taxa. Polymitarcydae,
	B (87.1%)	Confidence	4	

G1.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Alteration of low flows.	Abstraction.	F	25
	Increased sedimentation of instream habitat.	Land use.	NF	2.5

G1.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The macroinvertebrates have already reacted to the current conditions.	2

G1.5 AEC: B/C

PES	AEC	Comments		
В	B/C	An increase in sedimentation and nutrient loading could be aggravated by a reduction in flow. The cumulative effect of these factors could reduce the quality of the cobble habitat due to increased sedimentation and increased algal growth, as well as the vegetation habitat due to reduced	3	

PES	AEC	Comments	Conf
		inundation. The fast flow and moderate flow habitats will also be affected. It is anticipated that the changes in habitat and flow will reduce the abundance and/or frequency of occurrence of rheophilics and taxa requiring inundated vegetation. Possible increased nutrients could increase the abundances and frequency of occurrences of more tolerant taxa.	

EWR 2: GOEDEHOOP (CROCODILE RIVER) G2

G2.1 DATA AVAILABILITY

Data availability	Conf
 Invertebrate data and analysis from a single sampling trip to the site on 5th October 2007 (two sets of samples). Historical Invertebrate data from the Rivers Database' for site X2CROC-GOEDE (the EWR site). Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: Hydrological assessment by Prof Denis Hughes. IHI assessment by Delana Louw. Diatom Assessment by Shael Koekemoer. Geomorphological Assessment Index by Mark Rountree. Vegetation Assessment Index by James McKenzie. Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines. 	4

G2.2 **REFERENCE CONDITIONS**

Reference conditions	Conf
The reference total SASS 5 score is 260 and an ASPT of 7 and 59 taxa expected.	3

G2.3 PRESENT ECOLOGICAL STATE

	SASS5 score: 228 No of Ta	axa: 36	ASPT: 6.4	
PES description	This slight decrease in the PES is due to instream trout dams in the upper catchm enrichment of the water, which results in all the availability of habitat for macroinvertebra are also having a negative impact on th colonization. Flow sensitive taxa that w Heptageniidae, Tricorythidae. High scoring Perlidae. The burrowing mayfly, Polymitarcy	water quality ent. Problems gal growth on ate colonization he instream havere sampled taxa included vdae, was also	modification as a s associated with th instream habitat, eff n. Flow modification abitat and resultant included Perlidae, Prosopistomatidae, sampled at the site.	result of numerous his include nutrient ectively decreasing and sedimentation macroinvertebrate Prosopistomatidae, Heptageniidae and
	B (84.4%)	Confidence		4

G2.3.1 PES causes and sources

PES	Causes	Sources		Conf
В	Alteration of low flows.	Many small instream trout dams, abstraction.	F	2
	Increased sedimentation of instream habitat.	Land use.	NF	3

G2.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Negative	B/C	5 year	Land use and resulting erosion and sedimentation, abstraction, and water quality maintained at same levels. There have been a number of recent developments in the upper Crocodile catchment, including the Highland Gate development in the Kareekraal Spruit. The invertebrates have not yet adapted to these changes.	2

G2.5 AEC: C

PES	AEC	Comments		Conf
Rivers for	r Africa	EcoClassification Report: Volume 2	Report 26/8/3/1	0/12/009
_ .			' -	

PES	AEC	Comments	Conf
В	С	A decrease in the quality of the instream habitat, with resultant algal growth and accumulation of fines in the stones in current habitat will occur. Less marginal vegetation will be available for colonization by macroinvertebrates. Increased alien vegetation may result in bank destabilization which will increase sedimentation affecting instream habitat. These changes to the system will reduce the abundance and/or frequency of occurrence of rheophilic taxa as well as taxa utilizing the marginal vegetation. Those taxa requiring good quality cobble habitat, will be negatively impacted by the increased sedimentation and algal growth on the cobbles. Certain tolerant taxa may increase in abundance with increased nutrients in the system.	2.5

G3 EWR 3: POPLAR CREEK (CROCODILE RIVER)

G3.1 DATA AVAILABILITY

Data availability	Conf
 Invertebrate data and analysis from a single sampling trip to the site on 5th October 2007 (two sets of samples); Invertebrate data from the Rivers Database for site X2CROC-INDEM; Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Specialist assessments for this study: Hydrological assessment by Prof Denis Hughes. IHI assessment by Delana Louw. Diatom Assessment by Shael Koekemoer. Geomorphological Assessment Index by Mark Rountree. Vegetation Assessment Index by James McKenzie. Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines. 	4

G3.2 REFERENCE CONDITIONS

Reference conditions		
The reference total SASS 5 score is 240 with >35 taxa and an ASPT of 7.5.	3.5	

G3.3 PRESENT ECOLOGICAL STATE

G3.3.1 Site suitability

Site suitability in terms of	Reasonable diversity of hydraulic habitats. No optimal or SASS 5 sampling. Water quality of to alter habitat quality throughout.	MV comprises la compromised a	argely woody vegetation and is not nd suspended sediment load is likely
assessment index	3	Confidence	2

PES description	SASS5 score: 218 No of Ta The PES of the invertebrate assemblage attributed primarily to the upstream Kwe conditions. The unseasonal high releases main reasons for the deterioration in the ma in habitat (scouring due to high velocities) a be regarded as the unseasonal high flow macroinvertebrates have been affected by t MIRAI indicates that the invertebrates are a physico-chemical deterioration had the great	axa: 32 reflects mode na Dam and from the Kwer acroinvertebrate nd connectivity ws during the he condition in ffected by all as test impact.	ASPT: 6.8 rately deteriorated ecological integrity, land use activities.and modified flow ha Dam. The MIRAI indicates that the eassemblage are related to the change and seasonality. The main reason can winter months. No specific group of this stretch of the Crocodile River. The spects of the river condition but that the			
	C (74.5%) Confidence 4					

G3.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Reduced low flows.	Operation of Kurana Dam	Е	
0	Alteration in moderate floods.	Operation of Kwena Dam.	Г	25
C	Increased sediment loading (high turbidity).	Kwena dam, altered flow regime.		2.5
	Bed and bank modified (sedimentation).	Land use in catchment.		

G3.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	5 years	The operation of Kwena Dam has resulted in a severe change of seasonal flows, with high constant releases made during the dry season. Due to these constant releases sampling at this site is very difficult. Due to the development in the catchment the invertebrates have not yet adapted to the reduced low flows, altered flood regime and higher turbidity.	2.5

G3.5 REC: B

PES	REC	Comments	Conf
С	В	A number of taxa preferring slower water speeds are expected to occur more frequently and some of the molluscs and dipterans are expected to recolonise.	2.5

G3.6 AEC: C/D

PES	AEC	Comments	Conf
С	C/D	Deteriorating catchment condition will result in an increase in sedimentation and resultant loss of habitat. The deteriorating catchment condition is also likely to result in worsening water quality, thus resulting in the more sensitive invertebrate taxa occurring less frequently and even disappearing.	3

G4 EWR 4: KANYAMAZANE (CROCODILE RIVER)

G4.1 DATA AVAILABILITY

Data availability	Conf
Invertebrate data and analysis from a single sampling trip to the site on 5 th October 2007 (two sets of samples). Macroinvertebrate data from the National Rivers Database for additional sites in the reach. Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie. Kleynhans <i>et al.</i> (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans <i>et al.</i> (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.	3

G4.2 REFERENCE CONDITIONS

Reference conditions		
The reference total SASS 5 is 270, with over 35 taxa and an ASPT of >7.	3.5	

G4.3 PRESENT ECOLOGICAL STATE

G4.3.1 Site suitability

Site suitability in terms of assessment index	A range of the preferred hydraulic habitats The marginal vegetation is not optimal, in the alien invasive <i>Eichornia crassipes</i> . Water is turbidity and any effects thereof (e.g. fine habitats.	are present, v e sense that it o s turbid, possib s) has an effe	with the exception of sand and mud. comprises largely <i>Phragmites</i> and the bly as a result of sedimentation. The act on the quality of all invertebrate
	3	Confidence	3

	SASS5 score: 153	No of Taxa: 26	ASPT: 5.9
	The PES of the macroinv	ertebrate assemblage reflect	ts moderately deteriorated ecological
	integrity, attributed primarily	to the upstream land use act	vities and modified flow conditions. No
PES description	specific group of macroinve	rtebrates have been affected	by the condition in this stretch of the
	Crocodile River. The MIRAI	indicates that the macroinverte	ebrates are affected by all aspects of the
	river condition but that the ph	ysico-chemical deterioration h	ad the greatest impact.
	C (75.9%)	Confidence	4

G4.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Significant alterations to low flows and floods.	Abstraction (irrigation) and Kwena Dam operation	F	
	Increased salts, nutrients and toxics; decreased water clarity.	Irrigation return flows; other land-use practices.		3
	Increased sediment loading (related to erosion of banks as a result of clearing of crops e.g. sugarcane).	Land-use	NF	

G4.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The macroinvertebrates have already reacted to the current conditions.	3

G4.5 REC: B

PES	REC	Comments						
С	В	Improved catchment management will reduce the sediment loading and improve water quality. The improved conditions will lead to more sensitive taxa occurring more frequently and some moderately sensitive taxa such as Polymitarcyidae, Athericidae and Chlorocyphidae recolonising the river.	3					

G4.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	Increased return flow and worsening water quality. Increased industrial activities in Nelspruit could also result in higher levels of toxics occurring more frequently. The scenario will lead a more sensitive invertebrates occurring less frequently and even disappearing from this section of the river. It is expected that the Stonefly Perlidae will disappear as well as the more sensitive species of the Baetidae and Hydropsychidae.	3

G5 EWR 5: MALALANE (CROCODILE RIVER)

G5.1 DATA AVAILABILITY

Data availability	Conf
Invertebrate data and analysis from a single sampling trip to the site on 5 th October 2007 (two sets of samples). Invertebrate data from the Rivers database. Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: Hydrological assessment by Prof Denis Hughes. IHI assessment by Delana Louw. Diatom Assessment by Shael Koekemoer. Geomorphological Assessment Index by Mark Rountree. Vegetation Assessment Index by James McKenzie. Kleynhans <i>et al.</i> (2005): <i>A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.</i> Kleynhans <i>et al.</i> (2007): <i>A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.</i> Dallas (2007): <i>River Health Programme: SASS5 Data Interpretation Guidelines.</i>	4

G5.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 180, with over 30 taxa and an ASPT of >6.	3

G5.3 PRESENT ECOLOGICAL STATE

G5.3.1 Site suitability

Site suitability in terms of	Site highly disturbed. Water quality compro SOOC and GSM absent. This means tha <i>crassipes</i> abundant and further proliferation shading, and eventual de-oxygenation of the	omised. SIC a t a full SASS n could result water.	nd MV present although not optimal. 5 sample is not possible. <i>Eichornia</i> in loss of SIC and MV habitat area,
	3	Confidence	3.5

PES description	SASS5 score: 161 No of T The PES of the macroinvertebrate asso- integrity, attributed primarily to land use ac water quality problems. MIRAI indicates macroinvertebrate assemblage are due to (73.6) problems	axa: 32 emblage reflect tivities resulting that the main connectivity an	ASPT: 5 s moderately deteriorated ecological in decreased low flows and coinciding reasons for the impaired state of the d Sensitivity (69.7) and Water quality
	C (76.9%)	Confidence	4

G5.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Significant alteration to low flows and floods.	Abstractions for irrigation.	F	
С	Water quality issues including increased salts, nutrients, toxics, decreased water clarity.	Land use (return flows, etc.).	NF	3
	Bed modified as a result of sedimentation.	Releases from the dam, land use.		

G5.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		The invertebrates have already reacted to the changes in the	2.5

		river.	

G5.5 REC: B

PES	REC	Comments	Conf
С	В	Improved flow regime and catchment management can lead to reduced return flows and less sedimentation in the river. The gastropod snails will occur less frequently and a number of moderately sensitive taxa such as Polymitarcyidae and Corduliidae will recolonise the river.	3

G5.6 AEC: D

PES	AEC	Comments	Conf
С	D	Decreased low flows: increased return flows: Lead to worse water quality and increased sedimentation due to further bank erosion. This will result in less available habitat and the disappearance of a number of the more sensitive invertebrates (e.g. Perlidae and the more sensitive species of the Baetidae) while others will occur less frequently.	3

G6 EWR 6: NKONGOMA (CROCODILE RIVER)

G6.1 DATA AVAILABILITY

Data availability 0	Conf
 Invertebrate data and analysis from a single sampling trip to the site on 5th October 2007 (two sets of samples). Invertebrate data from the River Health Program 'Rivers Client' for sites X2CROC_NGONG. Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: Hydrological assessment by Prof Denis Hughes. IHI assessment by Delana Louw. Diatom Assessment by Shael Koekemoer. Geomorphological Assessment Index by Mark Rountree. Vegetation Assessment Index by James McKenzie. Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines. 	4

G6.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 230, with over 32 taxa and an ASPT of >6.	3.5

G6.3 PRESENT ECOLOGICAL STATE

G6.3.1 Site suitability

Site suitability in Scarce FCS and MV habitat. Bedrock and GSM are plentiful. Site thus limited in tavailability of the critical habitat types for macroinvertebrate EWR assessment.					
assessment index	2.5	Confidence	2.5		

PES description	SASS5 score: 121 No of Ta The PES of the macroinvertebrate asse integrity, attributed primarily to land use sedimentation of instream habitats with coin clearly in the disappearance of the tax macroinvertebrates. MIRAI indicates th macroinvertebrates are due to water quali problems.	axa: 25 emblage reflect e activities re- iciding water qu ca preferring c at the main ty (62.2%) and	ASPT: 4.8 ts moderately deteriorated ecological sulting in decreased low flows and iality problems. This can be seen most cobbles as well as surface dwelling reasons for the deterioration in the d connectivity and seasonality (58.9%)
	C (74.9%)	Confidence	4

G6.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Significant variation in low flows and floods.	Abstraction for irrigation.	F	
	Zero flows.			
С	Water quality deterioration (particularly salts, toxics and nutrients).	Land use.		3
	Instream and bank modification through	Clearing of sugarcane and orchards, overall	INF	
	sedimentation (resulting from erosion).	land use.		

G6.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Stable	С		Invertebrates already adapted to changes	2.5

G6.5 REC: B

PES	REC	Comments	Conf
С	В	Improved land management related to irrigation practices will lead to improved flow conditions, less erosion and therefore less sedimentation. Reduced return flows from agriculture will improve the water quality. These improvements will lead to a more natural invertebrate assemblage with the return of some moderately sensitive taxa such as Heptageniidae, Aeshnidae and Athericidae.	3

G6.6 AEC: D

PES	AEC	Comments	Conf
С	C/D	A larger area of irrigated sugarcane will result in increased periods of low flow and poorer water quality due to increased return flow. The poor land use practices will also result in greater erosion and sedimentation in the river. Because these activities are restricted to one bank only, the invertebrates will only go down to a C/D EC. As a result of the changed conditions a number of the more sensitive invertebrates (Tricorythidae and the more sensitive species of Baetidae) will disappear from the system, while others will occur less frequently and in lower abundances.	3

G7 EWR 7: HONEYBIRD (KAAP RIVER)

G7.1 DATA AVAILABILITY

Data availability	Conf
 Invertebrate data and analysis from a single sampling trip to the site on 5th October 2007 (two sets of samples); Invertebrate data from the Rivers database'; Preliminary maps and information on the catchment as supplied by Delana Louw, Water for Africa. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: Hydrological assessment by Prof Denis Hughes. IHI assessment by Delana Louw. Diatom Assessment by Shael Koekemoer. Geomorphological Assessment Index by Mark Rountree. Vegetation Assessment Index by James McKenzie. Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines. 	4

G7.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 250, with over 5 taxa and an ASPT of >7.	3.5

G7.3 PRESENT ECOLOGICAL STATE

DES description	SASS5 score: 194 N The PES of the macroinvertebrate a attributed primarily to land use activ	o of Taxa: 34 ssemblage reflects s ities resulting in dec	ASPT: 5.7 lightly deteriorated ecological reased low flows and coincidi	integrity, ng water
PES description	quality problems. The MIRAI indicate deterioration in water quality.	es that the water qua	ality (77.9%) is the main reaso	on for the
	B (83.6%)	Confidence	3	

G7.3.1 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Reduced base flows and zero flow.	Abstraction for irrigation.	F	2
	Water quality deterioration.	Land use.	NF	3

G7.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		The macroinvertebrates have already adapted to the changes in the system.	2.5

G7.5 REC: B

PES	REC	Comments	Conf
В	В	Maintain the current EC.	N/A

G7.6 AEC: D

PES	AEC	Comments	Conf
В	С	Increased abstraction from the Kaap River will result in a decrease in available habitat for the invertebrates. Decreased water quality will result from increased irrigation return flow. The decreased flow and water quality will cause higher temperatures and more algal growth reducing the available cobble habitat. As a result some of the more sensitive species of the Baetidae and Hydropsychidae will disappear while others (e.g. Perlidae, Heptageniidae and Chlorocyphidae) will occur less frequently.	3

G8 EWR 1: UPPER SABIE (SABIE RIVER)

G8.1 DATA AVAILABILITY

Data availability	Conf
Data availability Invertebrate data and analysis from a single sampling trip during September, 2007. Invertebrate data from the River Health Program for sites X3KSAB-TWEEF. Maps of study area and catchment information. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie.	Cont 3
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.	

G8.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 220, with >30 taxa and an ASPT of 7.5.	3

G8.3 PRESENT ECOLOGICAL STATE

G8.3.1 Site suitability

Site suitability in terms of	ality, plentiful inundated marginal aft bank.		
assessment index	5	Confidence	3.5

	SASS5 score: 170	No of Taxa: 27	7 ASPT: 6.3
	Habitat diversity was high and a number of	sensitive flow d	ependent taxa were collected including
	Baetidae (>2spp); Perlidae, Heptageniida	e, and Atheric	idae. The PES of the invertebrate
	assemblage reflects slightly deteriorated	ecological inte	grity, attributed primarily to land use
PES description	activities resulting in decreased low flows a	and sedimentati	on of instream habitats with coinciding
•	water quality problems. This can be seen	n most clearly	in the disappearance of the stoneflies
	(Perlidae) and the cobble dwelling Chlorocy	phid mayflies.	According to Dallas (2007), this SASS
	score equates to an A for this ecoregion (No	rth Eastern Hig	hlands lower zone).
	B (82.1%)	Confidence	4

G8.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
В	Nutrient enrichment and increased turbidity.	Minor return flows from Sabie town and forestry in catchment. Large sawmill and Plywood factory upstream of Sabie town.	NF	3
D	Flow reduction.	Abstraction (forestry and Sabie town), small scale irrigation.	F	

G8.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		Macroinvertebrates have adapted to current altered flow and water quality conditions.	2

G8.5 REC: B

PES	REC	Comments	Conf
В	A/B	Improving the condition of the marginal zone of the riparian vegetation will provide more habitat for vegetation dwelling invertebrates.	3

G8.6 AEC: C/D

PES	AEC	Comments	Conf
В	С	Increased nutrient enrichment will result in a decrease in the quality of the instream habitat, with potential resultant algal growth and accumulation of fines in the stones in current habitat impacting taxa requiring good quality cobble habitat. Less marginal vegetation will be available for colonization by macroinvertebrates due to lower flows. These changes to the system will reduce the abundance and/or FROC of rheophilic taxa as well as taxa utilizing the marginal vegetation. Certain tolerant taxa may increase in abundance with increased nutrients in the system.	3

G9 EWR 2: AAN DE VLIET (SABIE RIVER)

G9.1 DATA AVAILABILITY

Data availability	Conf
Invertebrate data and analysis from a single sampling trip to the site on 5 September 2007. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Macroinvertebrate data from the Rivers Database. Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie. Kleynhans <i>et al.</i> (2005): <i>A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.</i> Kleynhans <i>et al.</i> (2007): <i>A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.</i> Dallas (2007): <i>River Health Programme: SASS5 Data Interpretation Guidelines.</i>	4

G9.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference SASS 5 score is 220, with over 30 taxa present and an ASPT of > 7.5.	3

G9.3 PRESENT ECOLOGICAL STATE

G9.3.1 Site suitability

Site suitability in terms of	High diversity of flow and non-flow habitats in good condition, adequate depth, good water quality, indigenous riparian vegetation on the left bank.				
assessment index	4	Confidence	4		

PES description	SASS5 score: 167 No of Ta This slight decrease in the PES is due to instream trout dams in the upper catchm enrichment of the water, which results in al the availability of habitat for macroinvertebra are also having a negative impact on th colonization. Sensitive flow dependent ta Athericidae. The majority of taxa were colle the marginal vegetation habitat. Stones-c biotopes were sampled in the pool areas. A a B category for this EcoRegion (Lowveld Up	axa: 24 water quality ent. Problems gal growth on ate colonization he instream ha xa collected in the stor put-of-current (according to Da poper).	ASPT: 7 modification as a result of numerous associated with this include nutrient instream habitat, effectively decreasing n. Flow modification and sedimentation abitat and resultant macroinvertebrate iclude >2 spp Baetidae, Perlidae, and nes-in-current (SIC) habitat, followed by SOOC) and gravel, sand, mud (GSM) llas (2007), this SASS score equates to
	B/C (79.5%)	Confidence	4

G9.3.2 PES causes and sources

PES	Causes Sources		F/NF	Conf
	Reduction in base flows.	Forestry and irrigation.	Е	
С	Change in bed morphology. Roads, forestry and irrigation.			3
Ũ	Clearing of right bank and associated erosion.	Roads, forestry and irrigation. Resort activities.	NF	

G9.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf

В	Stable	В	Macroinvertebrates have adapted to current altered flow and water	2
			quality conditions.	

G9.5 REC: B

PES	REC	Comments	Conf
B/C	В	Improving the condition of the marginal zone of the riparian vegetation will provide more habitat for vegetation dwelling invertebrates resulting in the return of a number of molluscs as well as Aeshnidae and Atyidae.	3

G9.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	С	Increased sedimentation will result in a decrease in the quality and quantity of the cobble habitat. Decreased flows will result in less available vegetation habitat. As a result of these changes the more sensitive taxa inhabiting these biotopes will occur less frequently.	3

G10 EWR 3: KIDNEY (SABIE RIVER)

G10.1 DATA AVAILABILITY

	Conf
Data availability	Cont
Invertebrate data and analysis from a single sampling trip during September, 2007.	
Maps of study area and catchment information.	
Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS).	
1996 IFR site information (Godfrey, 2002).	
Specialist assessments for this study:	
Hydrological assessment by Prof Denis Hughes.	
IHI assessment by Delana Louw.	4
Diatom Assessment by Shael Koekemoer.	
Geomorphological Assessment Index by Mark Rountree.	
 Vegetation Assessment Index by James McKenzie. 	
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.	

G10.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 220, with over 32 taxa and an ASPT of >7.	3

G10.3 PRESENT ECOLOGICAL STATE

G10.3.1 Site suitability

Site suitability in terms of	Difficult site to sample as a result of the mult had reasonably diverse habitat present, with and no algae were present.	iple channels. plentiful flow h	The channel on the roadward side abitat. Bed substrates were unsilted
assessment index	3.5	Confidence	3

PES description	SASS5 score: 203 No of Ta The PES of the macroinvertebrate assemb attributed primarily to land use activities re- instream habitats with coinciding water qua disappearance of cobble dwelling taxa prefe MIRAI indicates that the main reasons for th seasonality and connectivity (74.1%) and to Habitat diversity was high and a suite of se and SOOC habitat which included A Heptageniidae, Perlidae and Hydracarina. A an A for this EcoRegion (Lowveld lower zone	axa: 32 blage reflects s esulting in deci ality problems. erring faster vel ne altered macr a lesser degre nsitive flow dep thericidae, Hi According to Da e).	ASPT: 6.3 slightly deteriorated ecological integrity, reased low flows and sedimentation of This can be seen most clearly in the locities such as the Tricorythid mayflies. roinvertebrate conditions are changes in se deterioration in water quality (88.4%). bendent taxa were collected in SIC, MV elodidae, Pyralidae, Chlorocyphidae, allas (2007), this SASS score equates to
	B (86.9%)	Confidence	4

G10.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Increased turbidity.	Landura		
В	Sedimentation.	Lanu-use.		3
	Reduction in flow.	Upstream abstractions, Inyaka Dam.	F	
	Altered high flows (moderate floods).	Forestry, abstraction, Inyaka Dam.	Г	

G10.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		Invertebrate community composition and abundance suggests that the taxa present have adjusted to current conditions in the catchment and the reduction in flows.	3

G10.5 AEC: B/C

PES	AEC	Comments	Conf
В	С	Increased sedimentation will lead to cobbles becoming more embedded, resulting in decreased habitat availability. The lower flows and increased return flows are likely to lead to higher nutrient levels and increased temperatures which will result in increased algal growth reducing available habitat even further. A number of the more sensitive taxa such as Helodidae, Pyralidae and the more sensitive species of Baetidae and Hydropsychidae will disappear and other less sensitive cobble dwelling taxa will occur less frequently.	3

G11 EWR 4: MAC MAC (MAC MAC RIVER)

G11.1 DATA AVAILABILITY

G11.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference range for the site is SASS 5 scores of 270, with >35 taxa and an ASPT of > 7.3.	3

G11.3 PRESENT ECOLOGICAL STATE

G11.3.1 Site suitability

Site suitability in terms of	Habitat diversity is high, with plentiful hydrau and reductions in flow. Adequate marginal v indigenous vegetation.	lic habitats whi egetation. Maj	ch will largely remain with increases ority of the riparian zone is
assessment index	5	Confidence	3

	SASS5 score: 225 No of Ta	axa: 35	ASPT: 6.4	
PES description	The PES of the macroinvertebrate assemble attributed primarily to land use activities re- instream habitats. This can be seen most preferring faster velocities such as the Tricc for the altered macroinvertebrate conditions and to a far lesser degree a slight deterioral invertebrates were collected in all habitats comprised of Dixidae, Philopotamidae, H Baetidae >2spp. According to Dallas (2007 within this EcoRegion (NE Highlands, lower	blage reflects s esulting in decr clearly in the brythid mayflies s are changes i tion in water qu , with the sens ydropsychidae,) this SASS sco zone).	slightly deteriorated ecological integr reased low flows and sedimentation disappearance of cobble dwelling ta . MIRAI indicates that the main reas in seasonality and connectivity (80.0 uality (89.7%). Diverse communities sitive (mostly flow dependent) eleme , Chlorocyphidae, Heptageniidae, a ore and ASPT equates to an A categor	rity, of axa son)%) s of ent and ory
	A/B (88.2%)	Confidence	3	

G11.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Slight eutrophication.	Input from upstream wastewater treatment works, forestry.	NE	
A/B	Altered flooding regime (moderate and high floods).	Forestry.		2.5
	Reduced low flows.	Forestry.	F	

G11.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Stable	A/B		Scores approximate reference, with the forestry already established in the catchment. It is likely that the community will remain stable.	2.5

G11.5 AEC: C

PES	AEC	Comments	Conf
A/B	B/C	Higher temperatures and lower oxygen concentrations will occur. An increase in the road networks and poorly maintained stream crossings will lead to increased sedimentation and corresponding decrease in available habitat quality. This decreased habitat will lead to cobble dwelling taxa occurring less frequently.	3

G12 EWR 5: MARITE (MARITE RIVER)

G12.1 DATA AVAILABILITY

Invertebrate data and analysis from a single sampling trip to the site on 3 September 2007. Maps of study area and catchment information. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie. Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	Data availability	Conf
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	Invertebrate data and analysis from a single sampling trip to the site on 3 September 2007. Maps of study area and catchment information. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie.	3
Delles (2007), Biver Health Branners CACCE Data Internetation Childelines	Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland. Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	

G12.2 REFERENCE CONDITIONS

Reference conditions	Conf
The range of scores for the reference is set at 240, with >34 taxa and an ASPT of > 7.	3

G12.3 PRESENT ECOLOGICAL STATE

G12.3.1 Site suitability

Site suitability in terms of	Abundant habitat in all flow classes including quality good and flow at the time of sample of slight disadvantage in that the river is braided	y very fast flow. created both sha d at this site.	Plentiful marginal vegetation. Water allow and deep habitat. There is a
assessment index	4	Confidence	3

	SASS5 score: 231 No of T	axa: 36	ASPT: 6.4	
PES description	The PES of the macroinvertebrate ass integrity, attributed primarily to land use ac flow regime resulting from the operation of disappearance of cobble dwelling taxa pret and Philopotamid caddisflies. MIRAI macroinvertebrate conditions are changes lesser degree a slight deterioration in wa banding for this EcoRegion (North eastern as an A.	emblage reflects tivities resulting i of Inyaka Dam. erring faster velo indicates that in seasonality a ater quality (80.7 Highlands, uppe	s moderately deterior in decreased low flows This can be seen mo ocities such as the Tric the main reason and connectivity (66.1 7%). According to the er zone), this site would	rated ecological s and the altered ost clearly in the corythid mayflies for the altered %) and to a far ne Dallas (2007) d be categorised
	B/C (80.5%).	Confidence	2.5	

G12.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
B/C	Increase in low flows.		F	3
	Reduction in floods.			
	Altered water temperature and clarity.	Releases from Inyaka Dam.		
	Change in sedimentation.			
	Change in bank structure.			

G12.3.3 TREND
PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Stable	B/C		The invertebrate community has a reasonably high sensitivity and appears to have adjusted to current flow conditions, despite their difference from natural state.	2

G12.4 REC: B

PES	REC	Comments	Conf
B/C	В	An improved flow regime (close to natural regime) will improve habitat and slower water velocities should result in slightly more sediments in the system. This will result in a number of the taxa preferring slower water (e.g. gastropods) returning.	2.5

G12.5 AEC: C/D

PES	AEC	Comments	Conf
B/C	С	The lower flows, smaller floods, more sandy habitat and increased nutrient concentrations will result in a decrease in cobble dwelling habitat as a result of less and poorer habitat as well as an increase in the more tolerant taxa depending on the water column and GSM. The decrease in vegetation will also result in a depauperate vegetation dwelling assemblage.	3

G13 EWR 6: MUTLUMUVI (MUTLUMUVI RIVER)

G13.1 DATA AVAILABILITY

Data availability	Conf
Invertebrate data and analysis from a single sampling trip during September, 2007.	
Information from RHP site X3MUTL-NEWFO.	
Maps of study area and catchment information.	
1996 IFR site information (Godfrey, 2002).	
Rivers database.	
Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS).	
Specialist assessments for this study:	
Hydrological assessment by Prof Denis Hughes.	3
IHI assessment by Delana Louw.	
Diatom Assessment by Shael Koekemoer.	
Geomorphological Assessment Index by Mark Rountree.	
Vegetation Assessment Index by James McKenzie.	
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.	

G13.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is 270, with over 35 taxa and an ASPT of > 7.5.	3

G13.3 PRESENT ECOLOGICAL STATE

G13.3.1 Site suitability

Site suitability in	Adequate and diverse invertebrate habitat despite low flows.			
assessment index	4	Confidence	3	

	SASS5 score: 189 No of Ta	axa: 32 ASP	T: 5.9
PES description	The PES of the macroinvertebrate assess integrity, attributed primarily to land use acc duration and altered beds and banks. The cobble dwelling taxa preferring faster veloci caddisflies. MIRAI indicates that the main r changes in seasonality and connectivity deterioration in water quality (77.4%). Desp site at the time of sampling, a number of me and MV. These include Heptageniidae, Bae Athericidae. The Dallas (2007) banding for	axa: 32 ASP emblage reflects mode tivities resulting in decre is can be seen most cl ties such as the Tricory eason for the altered ma (68.6%) and to a fa bite the lack of substantia ore sensitive invertebrate stidae (>2spp), Perlidae, this EcoRegion (Lowyeld	1: 5.9 rately deteriorated ecological eased low flows and zero flow learly in the disappearance of thid mayflies and Philopotamid acroinvertebrate conditions are r lesser degree a moderate al flow habitat and depth at the es were collected in SIC, GSM Chlorocyphidae, Atyidae, and
	B/C (77.7%)	Confidence	3.5

G13.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
B/C	Substantially reduced low flows.	Abstraction		
	Increase in zero flow duration.	rease in zero flow duration.		2.5
	Alteration of flood regime.	Landuas		
	Bed and bank modification.	Lanu use.		

G13.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Negative	С	Short term	The invertebrate community will undergo further changes over a five year period. This relates to loss of connectivity and increase in sedimentation.	3

G13.5 REC: B

PES	REC	Comments	Conf
B/C	В	Flow sensitive taxa will increase and sensitive taxa e.g. Oligoneuridae and the more sensitive species of Baetidae and Hydropsychidae will return. The increased low flows and shorter periods of lno flow will also result in more frequent inundation of marginal vegetation. The improved habitat in the marginal vegetation will result in a return of some of the vegetation dwelling taxa such as Pleidae and Aeshnidae.	3

G13.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	С	This scenario will lead to a decrease of the available vegetation and consequently in a decrease in the frequency of occurrence of a number of taxa.	3

G14 EWR 7: TLULANDZITEKA (TLULANDZITEKA RIVER)

G14.1 DATA AVAILABILITY

Data availability	Conf
Invertebrate data and analysis from a single sampling trip to the site on 6 TH September 2007.	
Maps of study area and catchment information.	
Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS).	
Rivers Database.	
Specialist assessments for this study:	
Hydrological assessment by Prof Denis Hughes.	
IHI assessment by Delana Louw.	3
Diatom Assessment by Shael Koekemoer.	
Geomorphological Assessment Index by Mark Rountree.	
Vegetation Assessment Index by James McKenzie.	
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.	
Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.	

G14.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference SASS 5 score range is >250, with >35 taxa and ASPT of >7	2.5

G14.3 PRESENT ECOLOGICAL STATE

G14.3.1 Site suitability

Site suitability in terms of	Site significantly disturbed. Habitat diversity The bed and banks are significantly modified and SOC habitats.	is restricted by d, and sedimen	v increasing sedimentation. Poor MV. tation has compromised instream SIC
assessment index	2.5	Confidence	2.5

	SASS5 score: 197 No of Ta	axa: 32	ASPT: 6.2
PES description	Instream habitat at this site has been altered in water quality. There is also encroachmer coarse substrate, creating a 'flow over coars mobile, but is becoming armoured by the a instream habitat and banks at this site, a nu SIC, GSM and MV. These include Heptag Hydropsychidae (>2sp), Helodidae, and Ath banks at this site, a number of more sensit These include Heptageniidae, Baetidae (>2 sp), Helodidae, and Athericidae. The Dalla sets this site as an A.	d by sediment I at of <i>Phragmites</i> se substrate' hy additional sedir imber of more s jeniidae, Baetic ericidae. Desp ive invertebrate 2 spp), Perlidae is (2007) bandi	oading, flow alteration and deterioration s sp. into the channel. There is plentiful /draulic habitat. This is currently largely nent loading. Despite the alteration to sensitive invertebrates were collected in dae (>2spp), Perlidae, Chlorocyphidae, ite the alteration to instream habitat and es were collected in SIC, GSM and MV. e, Chlorocyphidae, Hydropsychidae (> 2 ing for this EcoRegion (Lowveld upper)
	B/C (78.1%)	Confidence	2

G14.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Low flow reductions.	Abstraction.	F	
B/C	Bed and bank modification.		NF	2
	Nutrient enrichment.	Landuse in catchment (cattle, roads etc.).		
	Erosion in the riparian zone.			

G14.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Negative	C/D	5 years	It is likely that the invertebrate community has already 'reset' itself following disturbance to the bed through vegetation encroachment and subsequent sedimentation (road building etc.). However the likely continuation of the increasing sediment loading will gradually decrease all flow habitats and further deterioration in the invertebrate community is inevitable.	2.5

G14.5 AEC: B

PES	AEC	Comments	Conf
B/C	В	Improved land use such as less grazing and trampling in the riparian zone will reduce the erosion and thus also the sedimentation. This will improve the cobble and vegetation habitat for the invertebrates increasing the frequency at which a number of the taxa occur as well as the return of the sensitive mayfly family Tricorythidae.	2

G14.6 AEC: D

PES	AEC	Comments	Conf
B/C	C/D	This scenario will result in sedimentation of the river bed, decreasing the interstitial spaces and therefore the available habitat for cobble dwelling invertebrates. The decreased flows and resulting increased temperatures and decreased oxygen concentrations will also affect the more sensitive taxa. A number of the less sensitive taxa will occur less frequently, while some of the more sensitive taxa (Athericidae, Leptophlebiidae, Chlorocyphidae, Perlidae etc.) will disappear from the river reach.	2

G15 EWR 8: LOWER SAND (SAND RIVER)

G15.1 DATA AVAILABILITY

Data availability	Conf	
Invertebrate data and analysis from a single sampling trip to the site on 5 September 2008. Maps of study area and catchment information. Personal communications and assistance with data from Christa Thirion and Colleen Todd (DWAF: RQS). Specialist assessments for this study: • Hydrological assessment by Prof Denis Hughes. • IHI assessment by Delana Louw. • Diatom Assessment by Shael Koekemoer. • Geomorphological Assessment Index by Mark Rountree. • Vegetation Assessment Index by James McKenzie.	3	
Kleynhans et al. (2005): A Level 1 Ecosystem Classification System for South Africa, Lesotho and Swaziland.		
Kleynhans et al. (2007): A Level 2 Ecosystem Classification System for South Africa, Lesotho and Swaziland.		
Dallas (2007): River Health Programme: SASS5 Data Interpretation Guidelines.		

G15.2 REFERENCE CONDITIONS

Reference conditions	Conf
The reference total SASS 5 score is >235, with over 30 taxa and an ASPT of >7.	3

G15.3 PRESENT ECOLOGICAL STATE

G15.3.1 Site suitability

Site suitability in terms of	At the time of sampling the site was a series dominated by <i>Phragmites</i> reeds. The habita at all. The sample is skewed by this low variated by this low variated by this low variated by the series of	of small discor t is restricted to ability both in p	nected pools in a sand bed channel o GSM and MV, with no flow habitats hysical and hydraulic habitat.
assessment index	2.5	Confidence	1

	SASS5 score: 105 No of Ta	axa: 20	ASPT: 5.3	
PES description	The habitat at this site is dominated by coal water habitats only were present during the to the lack of flow and shading. The macro such conditions, predominantly resilient, low The only higher scoring taxon collected we typical of a temporary sand-dominated syst	rse mobile sand field visit. Wat binvertebrate fa v-scoring taxa, re Heptageniid em with a marg	ds and <i>Phragmites sp.</i> reeds er temperatures in pools we una collected were, as expe- which occur in these types mayflies. The balance of t ginal vegetation component.	 Standing re high due ected under of habitats. he fauna is According
	to the Dallas (2007) banding, the system wo	uld be categoris	sed as a D class. This is und	er review.
	C (68.8%)	Confidence	3.5	

G15.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
<u> </u>	Reduction in low flows.	Abstraction.	F	2
С	Modified water quality.	Land-use upstream.	NF	2

G15.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	5 years	Maintenance of current abstraction will have the effect of reducing the already low overall sensitivity of the invertebrate community. There is little habitat to buffer this change.	2

G15.5 REC: B

PES	REC	Comments	Conf
С	В	With improved low flows and possibly small to moderate floods (due to improved catchment management) habitat quality will improve, with a subsequent increase in overall macroinvertebrate diversity and abundance. More sensitive taxa are likely to increase in abundance and the number of high scoring taxa could increase.	3

G15.6 AEC: C

PES	AEC	Comments	Conf
С	C/D	Further loss of low flows and alteration of flood regime will lead to further impairments in water quality, proliferation of algae, deposition of fines, and overall degradation of instream habitat. The hydraulic habitat; Fast over Coarse Sediment (FCS) and Marginal Vegetation In Current (MVIC), both of which harbour the more sensitive elements of the invertebrate community, are likely to be most compromised both in terms of quality and quantity.	2.5

G16 REFERENCES

Dallas, H. 2007. River Health Programme: SASS5 Data Interpretation Guidelines. Document prepared for Institute for Natural Resources, and Department of Water Affairs and Forestry.

Godfrey, L. (Ed), 2002. Ecological Reserve Determination for the Crocodile River Catchment, Incomati System, Mpumalanga. Technical Report for the Department of Water Affairs and Forestry, by the Division of Water Environment and Forestry Technology, CSIR, Pretoria. Report No. ENV-P-C 2001. iii + 70 pp.

Kleynhans, C.J., Thirion, C. and Moolman, J. 2005. A Level I River Ecoregion classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa.

Kleynhans, C.J., Thirion, C., Moolman, J. and Gaulana, L. 2007. A Level II River Ecoregion classification System for South Africa, Lesotho and Swaziland. Report No. N/0000/00/REQ0104. Resource Quality Services, Department of Water Affairs and Forestry, Pretoria, South Africa.

APPENDIX H: RIPARIAN VEGETATION

J Mackenzie, BioRiver Solutions

H1 EWR 1: VALEYSPRUIT (CROCODILE RIVER)

H1.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points. Data collected from field assessment in October 2007. Previous VEGRAI training site Historical aerial photography (1944, 1956, 1965, 1997). Biomes of South Africa: Grasslands (Rutherford & Westfall, 1986); Grasslands (bushveld) (van Wyk & van Wyk, 1997) Grasslands (Mucina & Rutherford, 2006) Bioregions of South Africa: Mesic Highveld Grasslands (Gm 6) (Mucina & Rutherford, 2006) Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997) Vegetation Units: Lydenburg Montane Grassland (Gm 18), (Mucina & Rutherford, 2006) Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). Water Research Commission (WRC) (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	3.5

H1.2 REFERENCE CONDITIONS

The site occurs in the Lydenburg Montane Grassland in the Grassland biome. The marginal zone will be incised into the grassland floodplain with meandering channels and backwater/oxbow lake non-woody plants. Non-woody vegetation dominate both on the marginal and non-marginal zones as well as the floodplains (*Miscanthus* is dominant), with a minor woody presence (*Cliffortia* and *Leucosidea* spp. mainly).

Confidence: 4

H1.3 PRESENT ECOLOGICAL STATE

H1.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Presence/absence of the marginal zone.	1	Marginal zone predominantly present localized bank cutting (steep) with no marginal zone.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel morphology						
Channel bank stabilization.	2	Approx 40 – 60% of marginal zone undercut, frequently with overhanging root.				
Channel manipulation.	1	Unmanipulated.				
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.				
Vegetation						
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species sufficient in marginal zone.				
Occurrence of obligate, non-marginal zone riparian species.	2	Obligate riparian species sufficient in non-marginal zone.				
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	1	Localized, recent remnant.				
Exotic species at the site.	1	Present, but < 10 on all zones.				
Left and right-hand banks have riparian vegetation in similar condition.	0	Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.	1	Up to 7 points per bank.				

Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	1	Some annuals not in flower, some fire damage with coppice only.			
Hydraulic control					
Unnatural up/downstream control affecting site.	1	Upstream effect of bridge minimal localized deposition.			
Overall Site Suitability Rating	1.1				
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely un	suitable	2 - Site moderately suitable 5 - Site not to be used			

	Marginal zone: This zone is most imporvegetation is important for habitat creation/	rtant for year-ro variability.	und refuge habitat, and overhanging
PES description	Lower zone: Has high seasonal importance Upper zone: Is not directly important for ir as it provides possible shading. The site i	e for breeding hab nstream habitat, b s very close to re	itat, and shading of aquatic habitats. but bank stability is indirectly important ference conditions, with minor impacts a caused by livestock trampling
	OF EXOLICS OF THE HOT Marginal 2016 and SC	The Dalik Sluttpill	y caused by investock trainpling.
	A (92.5%)	Confidence	4.1

H1.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A	Some reduction in non-woody cover and abundance in marginal and non-marginal zones.	Small amount of exotics on non-marginal zone, and some trampling which has caused bank destabilization (slumping has occurred).	NF	4

H1.3.3 Profile

Figure H1 EWR 1: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Juncus Iomatophyllus (Lower limit)
- 3: Setaria spachelata (Upper limit)
- 5: Cliffortia (Lower limit)
- 7: Juncus Iomatophyllus (Lower limit)
- 9: Leucosidea sericea (Lower limit)
- 2: Setaria spachelata (Lower limit)
- 4: Miscanthus junceus (Lower limit)
- 6: Juncus Iomatophyllus (Upper limit)
- 8: Leucosidea sericea (Upper limit)

H1.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
А	Stable	А		Low impact of exotics, are unlikely to increase. Existing trampling pressure unlikely to cause a trend.	2

H1.5 AEC: B/C

PES	AEC	Comments	Conf
A	В	Increased trampling pressure will cause bank destabilization (slumping) and the subsequent change of marginal zone vegetation with a reduction in non-woody cover and abundance. This will allow exotics to increase on the non-marginal zone, but the impact will remain low.	2.1

H2 EWR 2: GOEDEHOOP (CROCODILE RIVER)

H2.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site with surveyed key vegetation points. Geomorphological, Index of Habitat Integrity (IHI), EcoRegion and associated information. Data collected from field assessment during October 2007. Aerial photos of site - 1956, 1964, 1975, 1985. Biomes of South Africa: Grasslands (Rutherford & Westfall, 1986); Grasslands (bushveld) (van Wyk & van Wyk, 1997) Grasslands (Mucina & Rutherford, 2006) Bioregions of South Africa: Mesic Highveld Grasslands (Gm 6) (Mucina & Rutherford, 2006) Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997) Vegetation Units: Lydenburg Thornveld (Gm 21), (Mucina & Rutherford, 2006) Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	3.5

H2.2 REFERENCE CONDITIONS

The site occurs in Lydenburg Thornveld in the Grassland biome. The marginal zone will be incised into the grassland floodplain with meandering channels and floodplain. Non-woody vegetation dominate both the marginal and non-marginal zones mostly, as well as the floodplains (*Miscanthus* spp. is dominant), with a minor woody presence (*Cliffortia, Combretum* and *Leucosidea* spp. mainly).

Confidence: 3.5

H2.3 PRESENT ECOLOGICAL STATE

H2.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Presence/absence of the marginal zone.	1	Marginal zone predominantly present localized bank cutting (steep) with no marginal zone.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel	morph	ology				
Channel bank stabilization.	2	Approx 40 – 60% of marginal zone undercut, frequently with overhanging root.				
Channel manipulation.	1	Unmanipulated.				
Profile distance too long to effectively conduct VEGRAI.	0	Entire profile assessed.				
Ve	getatior	1				
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species sufficient in marginal zone.				
Occurrence of obligate, non-marginal zone riparian species.	2	Obligate riparian species sufficient in non-marginal zone.				
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	0	None.				
Exotic species at the site.	1	Present, but < 10% on all zones.				
Left and right-hand banks have riparian vegetation in similar condition.	0	Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.	2	Up to 4 points per bank.				
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Identification of indicators was possible.				
Hudro		strol				

Hydraulic control

Unnatural up/downstream control affecting site.			Upstream effect of bridge minimal localized deposition.
Overall Site Suitability Rating		0.9	
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable		suitable	2 - Site moderately suitable 5 - Site not to be used

	Marginal zone: This zone is most impovegetation is important for habitat creation/	rtant for year-rou variability.	und refuge habitat, and overhanging			
	Lower zone: Has high seasonal importance for breeding habitat, and shading of aquatic habitats.					
PES description	Upper zone: Is not directly important for ir as it provides possible shading. The site i exotics on the marginal and non-margina trampling.	nstream habitat, b s very close to ref l zones, and som	ut bank stability is indirectly important ference condition, with minor impact of he bank slumping caused by livestock			
	A/B (89.9%)	Confidence	3.7			

H2.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
A/B	Some reduction in non-woody cover and abundance in marginal and non-marginal zones.	Small amount of exotics and some trampling which has caused bank destabilization (slumping has occurred) on marginal and marginal zones.	NF	4

H2.3.3 Profile

Figure H2: EWR 2: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Combretum (Upper limit)
- 3: Phragmites (lower limit)
- 5: Juncus (lower limit)
- 7: Phragmites (lower limit)
- 9: Miscanthus (Upper limit)

- 2: Miscanthus (lower limit)
- 4: Juncus (lower limit)
- 6: Juncus (Upper limit)
- 8: *Miscanthus* (lower limit)
- 10: Miscanthus (Upper limit)

H2.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Negative	В	10 years	There is a low impact of exotics, but if left unchecked will increase at the expense of indigenous species (some aggressive aliens present such as <i>Moris, Sesbania</i> and <i>Gleiditsia</i> spp.). Existing trampling pressure is also likely to cause additional bank slumping.	3

H2.5 AEC: C

PES	AEC	Comments				
A	В	Reduced low and moderate flows will likely reduce the success of woody recruitment on marginal and non-marginal zones. Non-woody cover will increase as the as marginal zone follows the narrowing channel.	2.8			

H3 EWR 3: POPLAR CREEK (CROCODILE RIVER)

H3.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site with surveyed key vegetation points. Previous VEGRAI training site. Aerial photos of site - 1956, 1964, 1970, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna biome (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Legogote Sour Bushveld (SVI 9), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems. Data collected from field assessment in 2007.	4

H3.2 REFERENCE CONDITIONS

This site occurs in the Lowveld bioregion of the Savanna biome in the Legogote Sour Bushveld. The site occurs on a stretch of river which cuts through high ground. As a result a mixed vegetation is expected, but one predominated by woody vegetation. Marginal zone species would typically be *Syzigium* species, *Cliffortia sp* and *Breonadia salicina*, with *Combretum erythrophyllum* and *Acacia robusta* and *gerardii* on the lower and upper zones. Marginal zone would typically be a narrow band with some sedge and hydrophilic grasses.

Confidence: 3.5

H3.3 PRESENT ECOLOGICAL STATE

H3.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Presence/absence of the marginal zone.	1	Marginal zone slightly inundated, but present.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel	morph	ology				
Channel bank stabilization.	0	Banks stable.				
Channel manipulation.	1	Road through LB and agricultural disturbance to within upper zone.				
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.				
Vegetation						
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species sufficient in marginal zone.				
Occurrence of obligate, non-marginal zone riparian species.	1	Obligate riparian species more than sufficient in non- marginal zone.				
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	0	None.				
Exotic species at the site.	2	< 10% in marginal zone, but high (up to 40%) in lower and upper zone woody.				
Left and right-hand banks have riparian vegetation in similar condition.	1	Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.	1	Up to 7 points per bank.				
Plant species easily identifiable i.e. leaves or flowers	0	Identification of indicators was possible.				
Bisses for Africa		t. Malana a				

present at time of site visit.					
Hydraulic control					
Unnatural up/downstream control affecting site.	0	No localized effect.			
Overall Site Suitability Rating	0.8				
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable		2 - Site moderately suitable5 - Site not to be used			

PES description	This site has all the necessary elements of the reference condition, but is highly disturbed and has a high proportion of exotic species.					
	Marginal zone: Is a mix of woody (Cliffortia, Breonadia, Syzigium) and grass (Setaria sphacelata).					
	Lower and upper zones: Dominated b Terrestrial species also indicate high levels	y woody specie of disturbance.	s with terrestrial grass understorey.			
	B (77.3%)	Confidence	3.7			

H3.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Loss of species composition and indigenous riparian species cover.	High level of invasion by exotic species		
В	Reduced woody cover and abundance.	Extensive disturbance at the site, agricultural activities, roads within the riparian zone and targeted woody species removal.	NF	4.5

H3.3.3 Profile

Figure H3 EWR 3: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Combretum (upper limit)
- 3: Gleditsia (lower limit)
- 5: Cliffortia (upper limit)
- 7: Phragmites/Cyperus ()
- 9: Salix mucronata (upper limit)
- 11: Celtis africana (lower limit)
- 13: Acacia karoo/gerardii.

- 2: Combretum (lower limit)
- 4: Salix mucronata (upper limit)
- 6: Salix mucronata (lower limit)
- 8: Phragmites/Salix (lower limit)
- 10: Combretum (lower limit)
- 12: Celtis africana (upper limit)

H3.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	D	5-10 years	Exotic invasion is high (up to 40% in places) and if left unchecked will increase in proportion at the expense of indigenous riparian vegetation.	3.5

H3.5 REC: B

PES	REC	Comments	Conf
С	В	More natural flows will facilitate non-woody establishment in the marginal zone, and will also facilitate <i>Cliffortia</i> spp. recruitment (presently absent). Flow manipulation will not improve the vegetation component on its own. In addition some woody exotics removal on the lower and upper zones will increase indigenous species cover and abundance, and improve species proportions which will improve species composition.	2.8

H3.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	 Marginal zone Existing <i>Cliffortia</i> and <i>Salix</i> adults are likely to survive, but most recruitment will be reduced. Some recruitment will still take place, but the marginal zone will migrate towards a narrowing channel. For non-woody species, initially a reduction in cover and abundance will occur, followed by marginal zone migration. Lower zone species are likely to colonize "old marginal" zone areas, also potentially changing species composition. Lower zone Lower flows will facilitate improved conditions for aliens and terrestrial species in the lower zone. Indigenous cover and abundance will reduce accordingly, species composition will be negatively impacted and exotics will prevent indigenous riparian recruitment. Reduced recruitment will also alter population structures to deviate more from expected. 	3

H4 EWR 4: KANYAMAZANE (CROCODILE RIVER)

H4.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site with surveyed key vegetation points. Data collected from field assessment in 2007. Previous VEGRAI training site Aerial photos of site - 1936, 1959, 1970, 1985, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna biome (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Pretoriuskop Sour Bushveld (SVI 10), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997.	4
WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	

H4.2 REFERENCE CONDITIONS

This site occurs in the Lowveld bioregion of the Savanna biome in the Pretoriuskop Sour Bushveld. The site occurs on a stretch of river which cuts through a gorge, but is still quite wide. As a result, a mixed vegetation is expected, but one predominated by woody vegetation. The site is also predominantly exposed bedrock and cobble/boulder. Marginal zone species would typically be *Syzigium* species, *Cliffortia sp* and *Breonadia salicina*, with *Combretum erythrophyllum, Ficus sycomorus* and *Acacia robusta* and *gerardii* on the lower and upper zones. Less *Phragmites mauritianus* expected than what is currently at the site. The marginal zone would typically be a narrow band with some sedge and hydrophilic grasses in between *Breonadia*.

Confidence: 3.5

H4.3 PRESENT ECOLOGICAL STATE

H4.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows				
Habitat availability	Rate	Motivation where applicable		
Presence/absence of the marginal zone.	1	Marginal zone slightly inundated, but present.		
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.		
Channel	morph	ology		
Channel bank stabilization.	0	Banks stable, some slumping due to trampling and cobble/sand mining (small-scale).		
Channel manipulation.	1	Rail along RB.		
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.		
Veç	getation	l		
Occurrence of obligate, marginal zone riparian species.	1	Obligate riparian species more than sufficient in marginal zone.		
Occurrence of obligate, non-marginal zone riparian species.	1	Obligate riparian species more than sufficient in non-marginal zone.		
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.		
Recent fire/s at site.	2	LB 60% recent burns.		
Exotic species at the site.	2	Up to 40% exotics, all zones.		
Left and right-hand banks have riparian vegetation in similar condition.	2	Probably due to fires and livestock on LB and not RB.		

Able to obtain sufficient survey po species for flow requirements.	ints of indicator	0	8 or more points per bank.	
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.			Identification of indicators was possible.	
Hydraulic control				
Unnatural up/downstream control affecting site.			No localized effect.	
Overall Site Suitability Rating		0.8		
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable			2 - Site moderately suitable 5 - Site not to be used	

	The site is heavily impacted with a high (20 - 40%) proportion of exotic species present. Flow reduction has resulted in channel narrowing and expansion of <i>Phragmites mauritianus</i> and disturbance includes wood removal, cobble harvesting, road and rail disturbance, grazing and trampling and soil erosion.					
PES description	S description Marginal zone: Dominated by <i>Phragmites mauritianus</i> (with some <i>Breonadia salicina</i>).					
Lower and upper zones: Dominated by a mix of woody species (<i>Combretum eryt Ficus sycomorus</i> mainly) and grasses, but the woody canopy is sparse due to remore recruitment from grazing.						
	C (64.7%) Confidence 3.6					

H4.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Increased reed cover.	Reduced flows with expansion of marginal zone.	F	
С	Change in species composition.	Exotic species invasion.		4
	Reduced woody cover and abundance and increased cover by grasses and open sand.	Vegetation removal, grazing & trampling and frequent fires.	NF	

H4.3.3 Profile

Figure H4 EWR 4: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Berulla/C. dives/Persecaria (lower limit)
- 3: Ludwigia octovalvis (upper limit)
- 5: Breonadia salicina
- 7: Trichilia emetica/Ficus sur (lower limit)
- 9: Phragmites mauritianus (lower limit)
- 11: Phragmites mauritianus (upper limit)
- 2: Ludwigia octovalvis (lower limit)
- 4: C. dives/Myriophyllum
- 6: Nuxia oppositifolia
- 8: Lonchocarpus capassa (lower limit)
- 10: Phragmites mauritianus (levee)
- 12: Combretum erythrophyllum (lower limit)

13: Combretum erythrophyllum (upper limit)15: Acacia robusta (lower limit)

- 14: Terminalia sericea
- 16: Acacia robusta (upper limit)

H4.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	D	10 years	Targeted wood removal, trampling and grazing, cobble collecting and road and rail disturbance Exotic invasion high (up to 20 - 40%) and if left unchecked will increase in proportion at the expense of indigenous riparian vegetation. Reduced moderate flows have favoured an increase in woody vegetation on the lower zone.	3

H4.5 REC: B

PES	REC	Comments			
С	В	Non-woody cover, abundance and species composition will improve on the marginal zone with reduced grazing/trampling pressure. Woody cover, abundance and species composition will improve on lower and upper zones with reduced wood removal and exotic removal, recruitment will improve with reduced grazing/trampling pressure and exotic removal (this will improve population structure).	2.7		

H4.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	Increased sedimentation will result in loss of exposed bedrock habitat which <i>B. salicina</i> requires for recruitment and establishment. Cover, abundance and recruitment of <i>B. salicina</i> will therefore reduce, and population structure will change over time. Reduced flooding and increased sedimentation will also cause reeds to increase, marginal zone migration will occur as sediment is colonised, and a change in species composition will occur i.e. initial loss of other non-woody marginal zone species.	2.8

H5 EWR 5: MALALANE (CROCODILE RIVER)

H5.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Previous VEGRAI training site Aerial photos of site - 1936, 1959, 1970, 1984, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna biome (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Granite Lowveld (SVI 3), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	4.5

H5.2 REFERENCE CONDITIONS

This site occurs in the Lowveld bioregion of the Savanna biome in the Granite Lowveld vegetation unit. Mixed vegetation is expected, but one predominated by woody vegetation on the lower and upper zones (although historically more open than closed canopy). The site is predominantly alluvial and *Phragmites mauritianus* is expected to line the active channel with a mostly narrow (under natural flows) band. Marginal zone species would typically be *Phragmites mauritianus*, with *Combretum erythrophyllum, Ficus sycomorus* and *Diospyros mespiliformisi* on the lower and upper zones. Less *Phragmites mauritianus* expected than what is currently at the site.

Confidence: 3.5

H5.3 PRESENT ECOLOGICAL STATE

H5.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Presence/absence of the marginal zone.	1	Marginal zone fairly inundated, but present.			
Proportion of marginal zone that is able to be sampled.	0	About 10% not sampled due to deep water.			
Channel	morph	ology			
Channel bank stabilization.	0	Banks stable.			
Channel manipulation.	1	RB with constructed homes, decks and walls.			
Profile distance too long to effectively conduct VEGRAI.	2	RB marginal zone too deep to survey.			
Ve	getatior	1			
Occurrence of obligate, marginal zone riparian species.	1	Obligate riparian species more than sufficient in marginal zone.			
Occurrence of obligate, non-marginal zone riparian species.	1	Obligate riparian species more than sufficient in non- marginal zone.			
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.			
Recent fire/s at site.	0	None.			
Exotic species at the site.	2	Up to 40% exotics in marginal zone, lower and upper zones less.			
Left and right-hand banks have riparian vegetation in similar condition.	1	Similar.			
Able to obtain sufficient survey points of indicator species for flow requirements.	2	Up o 5 points per bank and instream features.			
Rivers for Africa EcoClassificatio	on Repor	t: Volume 2 Report 26/8/3/10/12/009			

Plant species easily identifiable i.e. leaves or flowers present at time of site visit.			Identification of indicators was possible.
	Hydrau	ulic cor	htrol
Unnatural up/downstream control affecting site.			No localized effect.
Overall Site Suitability Rating		0.8	
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable			2 - Site moderately suitable5 - Site not to be used

	The landuse differs for the left and right banks. The left bank (LB) is within KNP and right bank (RB) is impacted by recreational facilities/fencing.					
PES description	Marginal zone: Has migrated and expanded towards the active channel as flows have been reduced and sediments have accumulated, and consists mainly of reedbeds (<i>Phragmites mauritianus</i>) and open sand with some <i>Cyperus sp</i> .					
	Lower zone: Mainly a mix of reeds and s mainly, while the upper zone is a mix of spa	shrubs(<i>Gymnosp</i> arce shub/tree and	ooria senegalensis and Grewia spp.) open/grassed areas.			
	C (76.3%)	Confidence	3.4			

H5.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Change to species composition.	Exotic vegetation high in the marginal zone (mainly non-woody aquatics).	NF	
	Reduced vegetation cover in upper zone.	Clearing for recreation on RB.		4
	Expansion of marginal zone reeds.	As channel narrows due to reduced flows.	F	

H5.3.3 Profile

Figure H5 EWR 5: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Phragmites (upper limit)
- 4: Cyperus/Juncus (upper limit)
- 6: Phragmites (upper limit)
- 8: Cynodon (lower limit)
- 10: Cynodon (upper limit)
- 12: Phragmites (lower limit)

- 3: Persecaria (lower limit)
- 5: Cyperus/Juncus (lower limit)
- 7: Phragmites (lower limit)
- 9: Persecaria (upper limit)
- 11: Phragmites (upper limit)
- 13: Phragmites (upper limit)

H5.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	10 -15 years	Exotic invasion is high (up to 20 - 40%) on the marginal zone, and if left unchecked will increase in proportion at the expense of indigenous riparian vegetation.	3

H5.5 REC: B

PES	REC	Comments	Conf
С	В	Improved low flows and more natural flow variability: Reduce reedbeds and sediment accumulation. Creates additional recruitment opportunities for woody vegetation and prevents terrestrial species colonization.	2.9

H5.6 AEC: D

PES	AEC	Comments	Conf
С	D	Reduction in base flows and small floods: Expansion of reedbeds and increased terrestrialization with reduced flood disturbance.	2.7

H6 EWR 6: NKONGOMA (CROCODILE RIVER)

H6.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Aerial photos of site - 1939, 1963, 1977, 1997 Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna biome (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Tshokwane-Hlane Basalt Lowveld (SVI 5), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile. Sabie-Sand & Olifants River Systems.	4.5

H6.2 REFERENCE CONDITIONS

This site occurs in the Lowveld bioregion of the Savanna biome in the Tshokwane-Hlane Basalt Lowveld vegetation unit. Mixed vegetation is expected, but one predominated by woody vegetation on the lower and upper zones (although historically more open than closed canopy existed). The site is predominantly exposed bedrock, but is entering the gorge so alluvial deposits occur where *Phragmites mauritianus* is expected. Marginal zone species would typically be *Phragmites mauritianus*, with *Cyperus spp.* where open sand occurs. C. *erythrophyllum, Nuxia oppositifolia, F. sycomorus* and *Diospyros mespiliformisi* on the lower and upper zones, interspersed with shrubs (*Gymnosporia senegalensis* and *Grewia spp.*).

Confidence: 3.5

H6.3 PRESENT ECOLOGICAL STATE

H6.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Presence/absence of the marginal zone.	1	Marginal zone fairly inundated, but present.			
Proportion of marginal zone that is able to be sampled.	2	Only LB sampled by foot, RB not by access.			
Channe	l morpho	logy			
Channel bank stabilization.	0	Banks stable.			
Channel manipulation.	0	None.			
Profile distance too long to effectively conduct VEGRAI.	2	RB not sampled.			
Vegetation					
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species more than sufficient in marginal zone.			
Occurrence of obligate, non-marginal zone riparian species.	2	Obligate riparian species more than sufficient in non-marginal zone.			
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.			
Recent fire/s at site.	0	None.			
Exotic species at the site.	1	Less than 10% overall.			
Left and right-hand banks have riparian vegetation in similar condition.	1	Similar, LB high proportion of exposed bedrock.			
Able to obtain sufficient survey points of indicator species for flow requirements.	2	> 8 points LB only.			

Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Identification of indicators was possible.
Hydraulic control	-	-
Unnatural up/downstream control affecting site.	0	No localized effect.
Overall Site Suitability Rating	1.0	
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable		2 - Site moderately suitable5 - Site not to be used

PES description	The site is fairly close to reference condition (<10%) impact of exotic vegetation. Reduct marginal zone especially. Marginal zone repopulation shows a marked reduction to wh	n in structure and ed flows have how eds have expand at is expected due	composition with the exception of low vever made significant changes to the led with reduced flows and <i>B. salicina</i> e to water stress.
	C (76.6%)	Confidence	3.6

H6.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
С	Increased reed cover.	Reduced flows.	F	25
	Changes to species composition.	Exotic vegetation (<10%).	Ν	3.5

H6.3.3 Profile

Figure H6 EWR 6: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Phragmites/Ludwigia (lower limit)
- 3: Phragmites (upper limit)
- 5: Breonadia (adult)/Krausii
- 7: F. caprefolia (lower limit)
- 9: Flugea virrosa
- 11: Schotia/Spirostachys

H6.4 TREND

- 2: C. marginata/Persecaria (lower limit)
- 4: Breonadia (juv)
- 6: C. marginata (upper limit)
- 8: Phragmites (upper limit)
- 10: D. mespiliformis/L. capassa (lower limit)

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	10 - 15 years	Exotic invasion low (up to 10%) on marginal zone mainly, and if left unchecked will increase in proportion at the expense of indigenous riparian vegetation.	3

H6.5 REC:B

PES	REC	Comments	Conf
С	В	Improve low flows and naturalise variability in flow. Improved recruitment opportunities for <i>Breonadia salicina</i> will increase woody cover and abundance. Increased inundation stress will also cause reeds to recede, but maintain vigour and density along the narrowed (but more natural) marginal zone.	3

H6.6 AEC: D

PES	AEC	Comments	Conf
С	D	Decrease low flows and increased zero flow periods will result in expansion of reedbeds (migration of marginal zone). Terrestrialisation of the riparian zone also likely to increase.	2.7

H7 EWR 7: HONEYBIRD (KAAP RIVER)

H7.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Aerial photos of site - 1936, 1959, 1970, 1984, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna biome (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Granite Lowveld (SVI 3), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	3.5

H7.2 REFERENCE CONDITIONS

This site occurs in the Lowveld bioregion of the Savanna biome in the Granite Lowveld vegetation unit. Mixed vegetation is expected with the marginal zone dominated by *B. salicina* where exposed bedrock occurs and *P. mauritianus* where alluvial deposits occur. Lower and upper zones are expected to be dominated by woody vegetation which includes *C. erythrophyllum, S. cordatum,* and *F. sycomorus* with mixed grass.

Confidence: 3.5

H7.3 PRESENT ECOLOGICAL STATE

H7.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows				
Habitat availability	Rate	Motivation where applicable		
Presence/absence of the marginal zone.		Fair proportion of exposed, steep bedrock with no marginal zone.		
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone sampled.		
Channel	morph	ology		
Channel bank stabilization.	0	Banks stable.		
Channel manipulation.	1	Close proximity of road works and agricultural activities.		
Profile distance too long to effectively conduct VEGRAI.		With difficulty due to density of exotic vegetation on LB.		
Ve	getatior	1		
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species more than sufficient in marginal zone.		
Occurrence of obligate, non-marginal zone riparian species.	2	Obligate riparian species more than sufficient in non- marginal zone.		
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.		
Recent fire/s at site.	0	None.		
Exotic species at the site.	4	Up to 80% exotics on upper zone, less on lower and marginal zones, but still high proportions.		
Left and right-hand banks have riparian vegetation in similar condition.	3	RB is seep zone with some wetland species, LB typically riparian, but with exotics.		
Able to obtain sufficient survey points of indicator species for flow requirements.		RB up to 7 points, LB too dense to survey beyond marginal and lower part of lower zone.		
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.		Identification of indicators was possible.		
Rivers for Africa EcoClassification Report: Volume 2 Report 26/8/3/10/12/009				

Hydraulic control					
Unnatural up/downstream control affecting site.	0	Bedrock control interesting, but natural.			
	Other	-			
Please specify.	3	RB seep zone with wetland indicator species occurring.			
Overall Site Suitability Rating	1.4				
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extra	emely u	2 - Site moderately suitable nsuitable 5 - Site not to be used			

PES description	In the marginal zone it appears that Breas and water stress is high. Recruitment is RB with typical wetland plants. The last scattered woody individuals. Selective v by woody vegetation but agricultural and high degree of exotic infestation, especia	onadia is "strand absent. There ower zone is pr wood removal is I civil disturbance Ily Arunda spp.	ed" in bedrock areas due to reduced flow is an extensive seep zone, especially the edominantly a reed and grass mix with apparent. The Upper zone is dominated is high. The Lower and upper zone has
	C/D (59.7%)	Confidence	3.1

H7.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Reduced woody cover in marginal zone.	Reduced low flows.	F	
C/D	Changes to species composition.	High (60 - 80%) impact by exotic vegetation.	NE	4
	Reduced woody cover.	Selected wood removal, agricultural and civil disturbance.		

H7.3.3 Profile

Figure H7 EWR 7: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Syzygium cordatum (adlt) (upper limit)
- 2: A. robusta/F. sycomorus (lower limit)4: Ishaemum
- 3: S. cordatum/F. Sycomorus (juvs)
- 5: F. sycomorus/S. mucronata (lower limit/upper limit respectively)6: Phragmites mauritianus (upper limit)7: Phragmites mauritianus (lower limit)
- 8: Phragmites mauritianus (upper limit)
- o. *Priragrittes mauritianu*s (lower limit)

H7.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
C/D	Negative	D	5 years	Wood removal, earth works and roads have had high disturbance in upper and lower zone. The previous photographs of this site has shown a significant increase in exotics which will keep on increasing.	3

H7.5 REC: B

PES	REC	Comments	Conf
C/D	B/C	An improvement in the flow regime will lead to a C EC with increased <i>Breonadia salicina</i> cover and reduced <i>Phragmites mauritianus</i> cover. The removal of exotics will improve the EC to a B/C.	3

H7.6 AEC: D

PES	AEC	Comments	Conf
C/D	D	Extensive loss of woody riparian species will occur in the marginal and lower zones. Reeds are likely to reduce, depending on the severity of the scenario.	2.5

H8 EWR 1 UPPER SABIE (SABIE RIVER)

H8.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Previous VEGRAI training site Aerial photos of site - 1944, 1956, 1965, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South AfricaLowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997).	4
Vegetation Units: Legogote Sour Bushveld (SVI 9), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997).	

H8.2 REFERENCE CONDITIONS

Marginal zone:

Dominated by a mixture of reeds (*P. mauritianus*) and herbaceous vegetation (*Seteria megaphylla*, ferns, *Cyperus* and *Berulla* spp.; with the reed component in smaller proportions than herbs), but with fairly high influence from overhanging lower zone trees (*Sygium* spp. and *B. salicina*). Stable vegetated geomorphic features with minimal open areas exist.

Lower zone:

Tree and shrub dominated riparian vegetation is present, which is fairly dense with a high proportion of riparian obligates (*S. cordatum*, *C. erythrophyllum*, *Cliffortia* and *Euclea* spp.). High proportion of shading for both lower and marginal zones (overhang) exists.

Upper zone:

Tree and shrub dominated as with the lower zone, but with greater variability of species (no additional riparian obligates present though), and fairly dense (*Syzigium* sp., *C. erythrophyllum*, *Tremma orieltalis*, *Halleria lucida*, *Diospyros mespiliformis*, *Celtis africana*, *Euclea* spp.)

Confidence: 3.5

H8.3 PRESENT ECOLOGICAL STATE

H8.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Presence/absence of the marginal zone.	1	Marginal completely present.			
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.			
Channel morphology					
Channel bank stabilization. 0 Impact not observed along site.					
Channel manipulation.	1	Slight manipulation towards bridge.			
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.			
Vegetation					

Site Suitability for the Assessment of Environmental Flows				
Habitat availability	Rate	Motivation where applicable		
Occurrence of obligate, marginal zone riparian species.	1	More than sufficient obligate riparian species in marginal zone.		
Occurrence of obligate, non-marginal zone riparian species.	2	Sufficient obligate riparian species in non-marginal zone, although abundance affected by recent fire.		
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.		
Recent fire/s at site.	4	Extensive recent fires on RB (which proportionally was a much larger bank than LB).		
Exotic species at the site.	1	About 20% exotic overall.		
Left and right-hand banks have riparian vegetation in similar condition.	2	Banks similar, but LB steep & short, RB long and gentle, therefore veg proportions are different.		
Able to obtain sufficient survey points of indicator species for flow requirements.	1	6 points for each bank.		
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Despite fire, identification was not a problem.		
Hydra	ulic cont	rol		
unnatural up/downstream control affecting site	1	site slightly affected by bridge supports downstream		
Overall Site Suitability Rating	1.2			
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely un	suitable	2 - Site moderately suitable 5 - Site not to be used		

	Marginal zone: This zone is generally close to reference condition, although exotic species (>10% of the species composition) are present (<i>Ageratum</i> species mainly). <i>B. salicina</i> is present, but should be slightly better represented. The marginal zone is dominated by non-woody vegetation with high levels of overhanging and submerged vegetation. There is a low abundance of woody vegetation, which plays an important role in flood attenuation and overhang (shade and falling leaves) which is important for instream habitat.				
PES description	Lower zone: The vegetation type is generally as expected on the lower zone, but disturbance (non- flow related) is high (picnic areas, roads) with moderately high levels of vegetation removal. Exotic species also compose about 20% of vegetation (<i>Lantana camara</i> , and <i>Acacia mearnsii</i>). The lower zone is dominated by woody vegetation (shading) but non-woody vegetation is important for fish breeding sites during floods/higher flows. Upper zone: Similar to the lower zone, but fewer exotics are present. The upper zone is dominated by woody vegetation, but the non-woody understorey is important for bank stabilization.				
	B/C (80.1%)	Confidence	3.4		

H8.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
	Reduced riparian vegetation cover and abundance.	Exotic species (up to 20% on lower zone), particularly <i>L. camara</i> and forest escapees		
B/C	Reduced recruitment which also skews population structure to "older" individuals.	utilize resource (light and space) that would otherwise be used by indigenous riparian species. Physical disturbance such as roads and vegetation removal for past picnic areas.	NF	3.3

H8.3.3 Profile

Key:

1: Ageratum (lower limit)

3: Ficus sur (tree line) (lower limit)

- 5: Ficus sur recruitment
- 7: Tremma orientalis (lower limit)

11: Syzygium cordatum (lower limit)

- 2: Water level
- 4: Lower/Upper interface
- 6: Ficus sur (root lower level) (lower limit)
- 8: Phragmites mauritianus (rhizome) (lower limit)
- 9: Phragmites mauritianus (at water level) (lower limit) 10: fern species (upper limit)
- 12: Combretum erythrophyllum (terrace).

H8.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Negative	С	5 - 10 years	Non-flow related impacts (combination of loss of recruitment and exotic invasion) likely to alter woody vegetation component for all vegetation metrics, non-woody vegetation response expected to be more stable.	2.5

H8.5 REC: B

PES	REC	Comments	Conf
B/C	В	An improved EC due to periodic removal of alien species and a cessation of picnic activities at the site.	3.3

H8.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	Alien vegetation will increase substantially and the reduced flows and associated sedimentation on the channel floor will result in alluvial bars colonised by reedbeds.	2.5

H9 EWR 2: AAN DE VLIET (SABIE RIVER)

H9.1 DATA AVAILABILITY

Historical aerial photography (1944, 1954, 1965, 1974, 1984, 1997). Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Previous VEGRAI training site. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South Africa Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Two: Ludifferentiated hubble and weedland (van Wyk & van Wyk, 1997)	Data availability	Conf
Vegetation Type: Ordinerentiated businelid and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Pretoriuskop Sour Bushveld (SVI 10), (Mucina & Rutherford, 2006). Principle region of plant Diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997).	Historical aerial photography (1944, 1954, 1965, 1974, 1984, 1997). Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Previous VEGRAI training site. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South Africa Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Pretoriuskop Sour Bushveld (SVI 10), (Mucina & Rutherford, 2006). Principle region of plant Diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997).	4

H9.2 REFERENCE CONDITIONS

Marginal zone

Dominated by a mixture of reeds (*P. mauritianus*), herbaceous aquatics (ferns, *Cyperus, Persecaria* and *Ludwigia* sp.) and grasses (*Seteria megaphylla,* and *Cynodon dactylon*) (reeds in smaller proportions than herbs and grasses), with fairly high influence from overhanging lower zone trees (*Syzigium* sp and *B. salicina*). Small proportion of the marginal zone will be woody and shady (*B. salicina* and *Syzigium* spp.) mainly.

Lower zone

Tree and shrub dominated vegetation type, fairly dense and shady (*S. cordatum* and *guineense, C. erythrophyllum, F. sycomorus* mainly).

Upper zone

Also tree and shrub dominated, also fairly dense and shady (*Syzigium sp., C. erythrophyllum, T. orieltalis, D. mespiliformis, C. africana, Euclea* and *Anthocleista* species mainly).

Confidence: 3.5

H9.3 PRESENT ECOLOGICAL STATE

H9.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Presence/absence of the marginal zone.	1	Marginal completely present.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel morphology						
Channel bank stabilization.	0	Less than 20% undercutting, and stabilized by roots.				
Channel manipulation.	1	Slight, some dumping from recreational activities.				
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.				
Vegetation						
Occurrence of obligate, marginal zone riparian species.	1	More than sufficient obligate riparian species in marginal zone.				

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Occurrence of obligate, non-marginal zone riparian species.	1	More than sufficient obligate riparian species in non-marginal zone, although structure affected by veg removal.			
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.			
Recent fire/s at site.	1	Burns have occurred, but not recent.			
Exotic species at the site.	1	About 20% or less exotic overall.			
Left and right-hand banks have riparian vegetation in similar condition.	2	Banks similar, but LB steep & short, RB long and gentle, therefore veg proportions are different.			
Able to obtain sufficient survey points of indicator species for flow requirements.	1	Min 6 points for each bank.			
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Despite fire, identification was not a problem.			
Hydrau	ulic conti	rol			
Unnatural up/downstream control affecting site.	0	Not observed.			
Overall Site Suitability Rating	0.8				
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable	suitable	2 - Site moderately suitable 5 - Site not to be used			

	Marginal zone: Is generally close to reference condition, with exotic species abundance 10 - 20% (<i>Ageratum</i> and <i>Nasturtium</i> mainly i.e. non-woody). <i>B. salicina</i> and <i>S. cordatum</i> is present and recruiting well in uncleared areas. The zone is dominated by non-woody vegetation with high levels of overhang and submerged vegetation. There is a low abundance of woody vegetation, which plays an important role in flood attenuation and overhang (shade and falling leaves) which is important for instream habitat.					
PES description	Lower zone: The vegetation type on the lower zone is generally as expected, but disturbance (non- flow related) is high (picnic areas, roads, resort activities) with high levels of vegetation removal including regular mowing. Exotic species also compose about 20% of the vegetation (<i>L. camara,</i> <i>A. mearnsii, Psidium guava, Ageratum, Canna,</i> and <i>Tichonia</i> spp.). The lower zone is dominated by woody vegetation (shading) but non-woody vegetation dominates a high proportion of the zone due to clearing of woody species. Upper zone: Similar to the lower zone, but with fewer exotics present. The upper zone is dominated by woody vegetation, but the non-woody understorey is important for bank stabilization.					
	C (74.3%)	Confidence	3.2			

H9.3.2 PES causes ans sources

PES	Causes	Sources	F/NF	Conf
С	Reduced riparian vegetation cover and abundance. Reduced recruitment which also skews population structure to "older" individuals.	Presents of exotic species in the marginal and lower zone (agricultural and forestry escapees mainly). Resort activities especially on RB, and mowing.	NF	3.3

H9.3.3 Profile

Figure H9 EWR 2: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: Breonadia salicina (upper limit)
- 3: Anthocleista & Breonadia (recruitment)
- 5: *Phragmites mauritianus* (lower limit)
- 7: Syzygium (recruitment)
- 9: Syzygium cordatum (lower limit)

10: Syzygium cordatum/Breonadia salicina/Anthocleista (upper limit)

- 12: Cyperus dives (lower limit)
- 11: *Cyperus dives* (upper limit)13: *Berulla* (lower limit)

14: *Typha capensis* (water level (wl))

2: Breonadia salicina (lower limit)

4; Breonadia salicina (lower limit)

8: Breonadia salicina (lower limit)

6: Phragmites mauritianus (upper limit)

- 15: Cyperus/Phragmites mauritianus (back channel)
- 16: Anthocleista/Cyperus hexamita/S. cordatum/Ficus sur (upper/lower/recruitment)

17: Ficus sycomorus (lower limit).

H9.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	C/D	5 - 10 years	Response due to clearing/mowing is stable since activities will not increase nor decrease, but exotics, if left unchecked will increase in proportion at the expense of indigenous riparian vegetation. Confidence is low since alien clearing activities are unknown.	2

H9.5 REC: B

PES	REC	Comments	Conf
С	В	To improve the EC, exotic vegetation must be selectively removed on the lower and upper zones. Current exotics on the marginal site are non-woody and therefore difficult to control. Vegetation removal and mowing within the riparian zone and recreational activities should be reduced in intensity but importantly also in extent i.e. areas within the riparian zone, especially on the floodplain.	2.8

H9.6 AEC: C/D

PES	AEC	Comments	Conf			
С	D	Alien vegetation will increase substantially, with associated reductions in indigenous riparian species cover, abundance and recruitment. With less recruitment, over time populations will become skewed toward older individuals and proportions of species in the assemblage will change	3.1			
PES	AEC	AEC Comments				
-----	-----	---	--	--	--	--
		and expected species will be less well represented.				

H10 EWR 3 KIDNEY (SABIE RIVER)

H10.1 DATA AVAILABILITY

H10.2 REFERENCE CONDITIONS

Marginal zone

Sections that are characterised by unconsolidated alluvia will tend to be dominated by reedbeds (*P. mauritianus*), while sections characterised by cobble/boulder or exposed bedrock will tend to be dominated by grasses (*C. dactylon*) and herbaceous aquatics (*Cyperus* sp, *Persecaria* sp, *Ludwigia* sp). A small proportion of the marginal zone will be woody (*Breonadia* and *Syzigium* spp. mainly).

Lower zone

Mix of tree and shrub dominated vegetation (*B. salicina, S. cordatum* and *guineense, and Nuxia oppositifolia* mainly) where substrates tend to be more rocky or consolidated. Reeds/open sand (*P. mauritianus*) occurs where substrates tend to be unconsolidated.

Upper zone

Tree and shrub dominated mainly (*C. erythrophyllum, F. sycomorus,* and *D. mespiliformis* with some *Spirostachys africana* expected in localised pockets).

Confidence: 4

H10.3 PRESENT ECOLOGICAL STATE

H10.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability Rate Motivation where applicable						
Presence/absence of the marginal zone.	0	Marginal completely present.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel morphology						
Channel bank stabilization. 0 Some (natural) undercutting, but stabilized by roots.						
Channel manipulation.	None.					
Profile distance too long to effectively conduct VEGRAI. 1 Entire profile assessed.						
Vegetation						

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Occurrence of obligate, marginal zone riparian species.	0	Obligate riparian species abundant in marginal zone.				
Occurrence of obligate, non-marginal zone riparian species.	0	Obligate riparian species abundant in non-marginal zone.				
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	0	None.				
Exotic species at the site.	1	< 10% exotic overall.				
Left and right-hand banks have riparian vegetation in similar condition.	1	Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.	0	More than 8 points per bank and other critical areas.				
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Identification was not a problem.				
Hydrau	ulic con	trol				
Unnatural up/downstream control affecting site.	0	None.				
Overall Site Suitability Rating	0.2					
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable	suitable	2 - Site moderately suitable 5 - Site not to be used				

	Marginal zone: The condition of this zone present at <10% (<i>Ageratum</i> mainly i.e. no result of the small unnatural component of f woody component that includes a mix of ree	e is close to refe n-woody). Some looding during 20 edbeds and grass,	erence condition, with exotic species e vegetation has been removed as a 00. This zone is dominated by a non- /herb areas.	
PES description	Lower zone: Vegetation is close to expected, with < 10% exotic invasion that consists of woody (<i>Lantana</i> and <i>Sesbania</i> spp. mainly) and non-woody (<i>Ageratum</i> spp. and mexican sunflower mainly) components. The lower zone is dominated by both woody (trees) and non-woody (reeds) vegetation patches.			
	Upper zone: The upper zone is similar to consists of woody (<i>Lantana</i> and <i>Sesbania</i> (<i>Ageratum</i> spp. and mexican sunflower m woody vegetation, which is on the increas flooding disturbance during 2000.	the lower zone, a spp. mainly, ar ainly) component se, a natural traje	also with < 10% exotic invasion that ad some <i>Melia</i> spp.) and non-woody s. The upper zone is dominated by actory for this site following the large	
	A/B (89.3%)	Confidence	4	

H10.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
		Exotic vegetation.	NF	
A/B	Reduced riparian vegetation cover and abundance.	Small unnatural component of 2000 floods due to increased velocity volume from cleared upstream areas.	F	3.5

H10.3.3 Profile

Figure H10 EWR 3: Riparian vegetation survey points used to assess flow requirements

Key:

1: S. cordatum (juv) (upper limit) 2: B. salicina (juv)/Ludwigia (upper limit) 3: water level 4: B. salicina (sub adult)/Cyperus (upper limit) 5: Persecaria (lower limit) 6: N. oppositifolia (lower limit) 7: P. mauritianus (lower limit) 8: N. oppositifolia (adult) (upper limit) 10: B. salicina (lower limit) 9: N. oppositifolia (adult) (lower limit) 12: P. mauritianus (lower limit) 11: S. guineense (lower limit) 13: water level 14: P. mauritianus (upper limit) 15: Ludwigia (lower limit) 16: Schoenoplectus (upper limit) 17: C. dives (upper limit) 18: Cyperus dives (upper limit) 19: Ludwigia (upper limit) 20: Schoenoplectus (lower limit) 21: Cyperus dives (lower limit) 22: Ludwigia (lower limit) 23: Cyperus dives (upper limit) 24: Persecaria (upper limit) 25: B. salicina (lower limit) 26: P. mauritianus (upper limit) 27: N. oppositifolia (lower limit) 28: P. mauritianus (lower limit) 29: Cyperus dives/C. hexangularis/Syzygium recruits (upper limit).

H10.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
A/B	Stable	A/B		Exotics, if left unchecked would increase in proportion at the expense of indigenous riparian vegetation, but the actions of Working for Water inside KNP appear to be ongoing and frequent enough to stabilise the site. Stability does however, depend on the continued action of Working for Water.	2.5

H10.5 AEC: B/C

PES	AEC	Comments		
A/B	B/C	Alien vegetation will increase unabated. This will result in slightly reduced woody cover and abundance and a subsequent change in species composition. Increased sedimentation and the loss of bedrock habitat which will result in a loss of <i>Breonadia</i> recruitment and a subsequent change in population structure. Sedimentation will also facilitate reed colonisation and expansion (especially of the marginal zone), and an increase in cover and abundance on the lower zone.	3	

H11 EWR 4 MAC MAC (MAC MAC RIVER)

H11.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Aerial photos of site - 1944, 1954, 1965, 1974, 1984, 1996. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Legogote Sour Bushveld (SVI 9), (Mucina & Rutherford, 2006). Principle region of plant diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	4

H11.2 REFERENCE CONDITIONS

Marginal zone

This section of the river occurs in hilly, steep sided area. The marginal zone will therefore tend to be dominated by a mix of open rocky/cobble/boulder areas and non-woody vegetation (grasses such as *Setaria sphacelata*, and herbaceous aquatics such as *Cyperus*, *Schoenoplectus*, and *Juncus* spp.). A small proportion of the marginal zone will be woody (*Breonadia* and *Syzigium* spp. mainly), but the marginal zone will be largely shady due to extensive overhang from lower zone woody vegetation. Water will therefore have lower temperatures and high amounts of leaf litter.

Lower zone

Mix of tree and shrub dominated vegetation (*B. salicina, S. cordatum, C. africana, Anthocleista* spp. mainly) typical of kloof areas, and open exposed bedrock areas.

Upper zone

Typical kloof vegetation, tree and shrub dominated mainly *C. africana, Anthocleista, Ficus sp., Erythrina,* and *Bequaertiodendron* spp.

Confidence: 3.5

H11.3 PRESENT ECOLOGICAL STATE

H11.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Presence/absence of the marginal zone.	0	Marginal completely present.			
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.			
Channel morphology					
Channel bank stabilization.		Some (natural) undercutting, but stabilized by roots.			
Channel manipulation.		Effects of downstream low-level bridge minimal.			
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.			
Vegetation					
Occurrence of obligate, marginal zone riparian species.		Obligate riparian species more than sufficient in marginal zone.			

	-					
Occurrence of obligate, non-marginal zone riparian	0	Obligate riparian species abundant in non-marginal				
species.	ů	zone.				
Occurrence of species that are (regional) indicators	of	Obligates present as uproted				
the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	0	None.				
Exotic species at the site.	1	< 10% exotic overall.				
Left and right-hand banks have riparian vegetation i	n 1	Similar banks into vegetation				
similar condition.	1	Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator	2	I = 0 and 2 points due to short length $P = 0$ points				
species for flow requirements.	2	LB only 5 points due to short length, RB > 6 points.				
Plant species easily identifiable i.e. leaves or flower	s o	Identification was not a muchlam				
present at time of site visit.	0	identification was not a problem.				
н	lydraulic con	itrol				
Unnatural up/downstream control affecting site.	1	Effects of downstream low-level bridge slight.				
Overall Site Suitability Rating	0.6					
Suitability rating:						
0 - Suite highly suitable 1 - Site suitable)	2 - Site moderately suitable				
3 - Site unsuitable 4 - Site extreme	ely unsuitable	5 - Site not to be used				

	Marginal zone: This zone is close to refer (small impact). Some vegetation has bee area, but this is a small impact. Some root extended lower low flows. The marginal zo	ence condition, w en removed as a exposure and un ne is dominated b	rith exotic species invasion at < 10% result of picnic and road activities in dercutting is evident and may be from y non-woody vegetation.	
PES description	Lower zone: This zone is close to expected, with < 10% exotic infestation (<i>Senna</i> spp. mainly). Some vegetation removal due to picnic and road activities downstream at site has occurred, as well as some targeted removal of large woodies - presumably Working For Water activity (WFW). The Lower zone is dominated by both woody (trees) and open area (exposed bedrock) patches.			
	Upper zone: Is similar to the Lower zone, al Senna and Ceasalpinea spp. mainly). Sor downstream of site has occurred, as well as WFW activity. The Upper zone is dominate large <i>B. salicina</i> specimens occur on the active channel in the last 100 years.	so with < 10% ex ne vegetation ren s some targeted re d by woody vege upper zone and	otic woody species invasion (<i>Lantana</i> , noval due to picnic and road activities emoval of large woodies - presumably tation. Interestingly several extremely may indicate much wetter and wider	
	A/B (89.9%)	Confidence	3.9	

H11.3.2 PES causes and sources

PES	CAUSES	SOURCES	F/NF	Conf ³	
A/B	Reduced riparian vegetation cover and	< 10% exotics on all zones.	NF	0.5	
	abundance (minimal impact).	Some root exposure and undercutting may be from extended lower low flows.	F	3.5	

H11.3.3 Profile

Figure H11 EWR 4: Riparian vegetation survey points used to assess flow requirements

Keys:

- 1: B. salicina recruitment (lower limit)
- 3: B. salicina (adult level)
- 5: F. sur (lower limit)

H11.4 TREND

- 7: B. magalismontana (lower limit)
- 9: B. salicina adults (old channel) (adult level).

Υ.

2: Water level

- 4: C. dives/S. cordatum recruitment
- 6: B. salicina adults (lower limit)
- 8: C. africana adult (adult level)

PES	Trend	Trend PES	Time	Reasons	
A/B	Negative	В	10 -15 years	Exotics, if left unchecked will increase in proportion at the expense of indigenous riparian vegetation.	3

H11.5 AEC: C

PES	AEC	Comments	Conf
A/B	B/C	Aliens will increase to around 30 - 40% on all zones, especially forestry escapees and <i>Lantana</i> . Additional aliens will mean less available resource (water, light, space and nutrients) for the recruitment and survival of indigenous riparian species (both woody and non-woody). Subsequently cover and abundance will reduce, and populations will become biased toward older individuals. Species composition will also change more from reference condition since proportions of indigenous species will reduce or vanish.	2.9

H12 EWR 5 MARITE (MARITE RIVER)

H12.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach.	
Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows.	
Data collected from field assessment in 2007.	
Previous VEGRAI training site	
Aerial photos of site - 1944, 1954, 1965, 1974, 1984, 1997.	
Previous IFR studies.	
Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk,	4
1997) Savanna (Mucina & Rutherford, 2006).	
Bioregions of South Africa Lowveld (SVI 7) (Mucina & Rutherford, 2006).	
Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997).	
Vegetation Units: Pretoriuskop Sour Bushveld (SVI 10), (Mucina & Rutherford, 2006).	
Principle region of plant Diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997).	
WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	

H12.2 REFERENCE CONDITIONS

Marginal zone

Sections that are characterised by unconsolidated alluvia will tend to be dominated by reedbeds (*P. mauritianus*), while sections characterised by cobble/boulder or exposed bedrock will tend to be dominated by woody vegetation (*Breonadia* and *Syzigium* mainly), although open sandy and rocky areas are frequent within these vegetation types.

Lower zone

A mix of tree and shrub dominated vegetation (*B. salicina*, *S. cordatum* and *guineense*, *Nuxia* oppositifolia and *C. erythrophyllum* mainly) is present where substrates tend to be more rocky or consolidated and reeds/open sand is present (*P. mauritianus*) where substrates tend to be unconsolidated.

Upper zone

Tree and shrub dominate mainly (*C. erythrophyllum*, *F. sycomorus*, *D. mespiliformis*) with some *Spirostachys africana* expected in localised pockets. Some *B. salicina* expected where fragmented exposed bedrock occurs.

Confidence: 3.7

H12.3 PRESENT ECOLOGICAL STATE

H12.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows							
Habitat availability	Rate	Motivation where applicable					
Presence/absence of the marginal zone.	1	Marginal completely present.					
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.					
Channel morphology							
Channel bank stabilization.	1	Some undercutting, but predominantly natural and stabilized by roots.					
Channel manipulation.	0	Channel banks (marginal zone) unmanipulated.					
Profile distance too long to effectively conduct VEGRAI.	Entire profile assessed.						
Rivers for Africa EcoClassifica December 2009	ation Re VP – 91	port: Volume 2 Report 26/8/3/10/12/009 33 Page 304					

Site Suitability for the Assessment of Environmenta	al Flows	3
Habitat availability	Rate	Motivation where applicable
	Vegeta	tion
Occurrence of obligate, marginal zone riparian species.		More than sufficient obligate riparian species in marginal zone.
Occurrence of obligate, non-marginal zone riparian species.	1	More than sufficient obligate riparian species in non- marginal zone.
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.
Recent fire/s at site.		Approx 30% of Site (RB) recently burnt.
Exotic species at the site.	1	< 20% throughout, but $> 0%$.
Left and right-hand banks have riparian vegetation in similar condition.		Banks similar, not different in vegetation type.
Able to obtain sufficient survey points of indicator species for flow requirements.	2	Only 3 on RB, but sufficient for bank morphology.
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.		Despite fire, identification was not a problem.
Нус	draulic	control
Unnatural up/downstream control affecting site.	0	Site not affected by unnatural hydrualic controls.
Overall Site Suitability Rating	0.7	
Suitability rating: 0 - Suite highly suitable 1 - Site suitable 3 - Site unsuitable 4 - Site extremely unsuitable	unsuitab	2 - Site moderately suitable

	Marginal zone: The marginal zone is close less than 10%. Some vegetation has bee and footpaths have been cut. Root expos flows. The marginal zone is dominated by (<i>Breonadia</i> and <i>Syzigium</i> spp.).	e to reference cor n removed as a ure and undercutt patches of reed	ndition, with exotic species present at result of livestock accessing the river ting may be from extended lower low beds, grassed areas and tree clumps		
PES description	Lower zone: Vegetation in this zone is close to expected, although there is a presence of 10 - 20% woody exotics (<i>Lantana, Caesalpinea, Sesbania, Psidium,</i> and <i>Senna</i> spp. mainly). Vegetation removal is mainly due to grazing and trampling from livestock, selected wood removal, cutting of footpaths, and recent fires. The lower zone is dominated by both woody (trees) and open area (exposed bedrock) patches.				
	Upper Zone: Similar to the lower zone, with <i>Caesalpinea, Sesbania, Psidium,</i> and <i>Sen</i> grazing and trampling from livestock, select The upper zone is dominated by woody veg	less then 10% wonthing the set of	body exotic species present (<i>Lantana,</i> Vegetation removal is mainly due to , cutting of footpaths, and recent fires.		
	B/C (80.4%)	Confidence	4		

H12.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf
B/C	Reduced riparian vegetation cover and abundance (minimal impact)	10 - 20% presence of exotic species in all vegetation zones Some vegetation removal due to grazing and trampling from livestock, selected wood removal, cutting of footpaths, and recent fires.	NF	3.7
	Expansion of marginal zone by reed colonization	Increased low flows (reduced variability)	E	
	of sand bars over time	due to releases from Inyaka Dam.	1	

H12.3.3 Profile

Key:

- 1: D. mespiliformis adult tree line (lower limit) 2: Terminalia sericea (adults) 3: C. erythrophyllum 4: N. oppositifolia 5: B. salicina (upper limit) 6: S. cordatum (upper limit) 7: B. salicina/S. cordatum (upper limit) 8: P. mauritianus (upper limit) 9: Setaria & Ishaemum (upper limit) 10: Cyperus dives (upper limit) 11: Syzygium recruits 12: Ludwigia (upper limit) 13: P. mauritianus (lower limit) 14: P. mauritianus (lower limit) 15: P. mauritianus (lower limit) 16: Setaria & Ishaemum (lower limit) 17: Syzygium recruits (lower limit) 18: B. salicina adults (upper limit) 19: Syzygium recruits (upper limit) 20: Syzygium recruits (upper limit) 21: P. mauritianus (upper limit) 22: Persecaria (upper limit) 23: P. mauritianus (lower limit) 24: Water level
- 25: B. salicina & N. oppositifolia (upper limit) 26: B. salicina root zone (lower limit)
- 27: Syzygium recruits ()
- 28: S. cordatum (upper limit).

H12.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
B/C	Negative	C/D	10 -15 years	Exotics, if left unchecked will increase in proportion at the expense of indigenous riparian vegetation.	3

H12.5 REC: B

PES	REC	Comments	Conf
B/C	В	Selective removal of exotic vegetation in the lower and upper zones will improve the EC. Current exotics present in the marginal zone are low or non-woody and therefore difficult to control. A reduction in vegetation removal, grazing and trampling will result in increased natural cover and abundance of woody and non-woody riparian vegetation.	3.3

H12.6 AEC: C/D

PES	AEC	Comments	Conf
B/C	C/D	The scenario will result in the reduction of indigenous riparian species cover, abundance and recruitment. With less recruitment, over time populations will become skewed toward older individuals and proportions of species in the assemblage will change and expected species will be less well represented.	2.7

H13 EWR 6: MUTLUMUVI (MUTLUMUVI RIVER)

H13.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Aerial photos of site - 1954, 1965, 1974, 1984. 1996 IFR site information (Godfrey, 2002). Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South Africa Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Granite Lowveld (SVI 3), (Mucina & Rutherford, 2006). Principle region of plant Diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	4

H13.2 REFERENCE CONDITIONS

Marginal zone

Sections are characterised by unconsolidated alluvia will tend to be dominated by reedbeds (*P. mauritianus*), while sections characterised by cobble/boulder or exposed bedrock will tend to be dominated by woody vegetation (*Breonadia* and *Syzigium* spp. mainly).

Lower zone

Mix of tree and shrub dominated vegetation (*B. salicina*, *S. cordatum* and *S. guineense*, and *N. oppositifolia* mainly) where substrates tend to be more rocky or consolidated and reeds/open sand (*P. mauritianus*) where substrates tend to be unconsolidated.

Upper zone

Tree and shrub dominated with terrestrial grasses. High diverity of woody vegetation expected (*Lonchcarpus capassa*, *Ficus sycomorus* and *F. sur*, *Diospyros mespiliformis*, *Schotia brachypetala*) with some *Spirostachys africana* expected in localised pockets).

Confidence: 3.5

H13.3 PRESENT ECOLOGICAL STATE

H13.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Presence/absence of the marginal zone.	0	Marginal completely present.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel morphology						
Channel bank stabilization.	0	No destabilization observed.				
Channel manipulation.	0	None.				
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.				
Veç	Vegetation					
Occurrence of obligate, marginal zone riparian species.	1	Obligate riparian species more than sufficient in marginal zone.				

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
Occurrence of obligate, non-marginal zone riparian species.	1	Obligate riparian species more than sufficient in non-marginal zone.				
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	0	None.				
Exotic species at the site.	1	< 20% exotic overall.				
Left and right-hand banks have riparian vegetation in similar condition.		Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.		More than 8 points per bank and instream features.				
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Identification was not a problem.				
Hydrau	ulic con	trol				
Unnatural up/downstream control affecting site.	0	None.				
Overall Site Suitability Rating	0.4					
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely unsuitable		2 - Site moderately suitable 5 - Site not to be used				

	Marginal zone: Close to reference, but se species and therefore cover, abundance a expanded due to colonization of additional s	elected wood rem and recruitment have rediment.	noval has reduced some of the tree as been reduced. Reeds have also
PES description	Lower zone: The zone has been invaded <i>Sesbania, Psidium,</i> and <i>Senna</i> spp. mainly has reduced some of the tree species and reduced. Reeds have also expanded due to Upper zone: Close to reference, but grazunderstorey.	by 10 - 20%, w). As with the m therefore cover, a colonization of a ting and tramplin	oody exotics (<i>Lantana</i> , <i>Caesalpinea</i> , arginal zone, selected wood removal abundance and recruitment has been dditional sediment. g has removed large proportions of
	C (75.6%)	Confidence	3.8

H13.3.2 Reasons for PES

PES	Causes	Sources	F/NF	Conf
	Reduced cover and abundance of indigenous riparian species.	High levels of alien species invasion (especially in lower and upper zones).		
С	Changes to species composition and population structure of indigenous riparian species.	High levels of vegetation removal (grazing and trampling mainly) especially in lower and upper zones.	NF	5

H13.3.3 Profile

Figure H13 EWR 6: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: C. erythrophyllum (Lower limit)
- 3: Terrace (Lower limit)
- 5: S. cordatum (Upper limit)
- 7: P. mauritianus (Upper limit)
- 9: P. mauritianus (Lower limit)
- 12: Setaria (Lower limit)
- 14: S. mucronata (Lower limit)
- 16: Myrica serrata (Lower limit)
- 18: Cyperus (Lower limit)
- 20: S. mucronata (Lower limit)
- 22: B. salicina recruits
- 24: P. mauritianus (Upper limit)
- 26: D. mespiliformis (Upper limit)
- 28: D. mespiliformis (Upper limit).

H13.4 TREND

- 2: D. mespiliformis/S. brachypetala (Lower limit)
- 4: B. salicina & S. cordatum (Upper limit)
- 6: B. salicina & Salix mucronata (Upper limit)
- 8: C. dives (Upper limit)
- 11: Setaria (Upper limit)
- 13: P. mauritianus (Lower limit)
- 15: Myrica serrata (Upper limit)
- 17: P. mauritianus/Setaria (Lower limit)
- 19: Cyperus (Upper limit)
- 21: B. salicina (Lower limit)
- 23: *P. mauritianus* roots (Lower limit)
- 25: C. dives (Upper limit)
- 27: B. salicina recruits (Upper limit)

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	D	10 years	Exotics, if left unchecked will increase in proportion at the expense of indigenous riparian vegetation. Grazing and trampling from livestock, wood removal (selected <i>Breonadia</i> spp., <i>Ficus sur, Erythrina</i> , and <i>Sprirostachys</i> spp.) and cutting of footpaths has high impact.	3

H13.5 REC: B

PES	REC	Comments	Conf
С	В	No change to the marginal zone. On the lower and upper zones a reduction in exotic vegetation together with marked reduction in selected wood removal was used to improve EC.	3.2

H13.6 AEC: C/D

PES	AEC	Comments	Conf
С	D	Increase selected wood removal of large trees (Breonadia mainly) from the marginal zone, as well as trampling in marginal zone. Increase grazing of lower and upper zone non-woody species as well as proportion of exotics in these zones.	2.5

H14 EWR 7 TLULANDZITEKA (TLULANDZITEKA RIVER)

H14.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Aerial photos of site - 1944, 1965, 1974, 1997. Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006). Bioregions of South Africa Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997). Vegetation Units: Granite Lowveld (SVI 3), (Mucina & Rutherford, 2006). Principle region of plant Diversity and Endemism: Maputaland-Pondoland Region (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	2

H14.2 REFERENCE CONDITIONS

Marginal zone

Sections that are characterised by unconsolidated alluvia will tend to be dominated by reedbeds (*P. mauritianus*), while sections characterised by cobble/boulder or exposed bedrock will tend to be dominated by woody vegetation (*Breonadia* and *Syzigium* spp. mainly).

Lower zone

Mix of tree and shrub dominated vegetation (*B. salicina*, *S. cordatum* and *S. guineense*, and *N. oppositifolia* mainly) where substrates tend to be more rocky or consolidated and reeds/open sand (*P. mauritianus*) where substrates tend to be unconsolidated.

Upper zone

Tree and shrub dominated with terrestrial grasses. High diversity of woody vegetation expected. (*Lonchcarpus capassa, F. sycomorus* and *F. sur, Diospyros mespiliformis, Schotia brachypetala* with some *Spirostachys africana* expected in localised pockets).

Confidence: 3.5

H14.3 PRESENT ECOLOGICAL STATE

H14.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows					
Habitat availability	Rate	Motivation where applicable			
Presence/absence of the marginal zone.	1	Marginal completely present, some deposition near bridge.			
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.			
Channel morphology					
Channel bank stabilization.	0	Bank erosion observed, but minimal.			
Channel manipulation.	1	Unmanipulated.			
Profile distance too long to effectively conduct VEGRAI.	1	Entire profile assessed.			
V	egetat	ion			
Occurrence of obligate, marginal zone riparian species.	2	Obligate riparian species sufficient in marginal zone.			
Occurrence of obligate, non-marginal zone riparian	2	Obligate riparian species sufficient in non-marginal zone.			

Site Suitability for the Assessment of Environmental Flows						
Habitat availability	Rate	Motivation where applicable				
species.						
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.				
Recent fire/s at site.	2	Most of RB recently burnt (high intensity fire).				
Exotic species at the site.	3	60 – 80% exotics in upper zone, less in lower and marginal zones.				
Left and right-hand banks have riparian vegetation in similar condition.		Similar banks into vegetation.				
Able to obtain sufficient survey points of indicator species for flow requirements.		6 - 7 points per bank.				
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.		Identification was not a problem.				
Hydr	raulic o	control				
Unnatural up/downstream control affecting site.		Downstream effect of bridge pillars increased sediment deposition slightly, but localized.				
Overall Site Suitability Rating						
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely un	nsuitab	2 - Site moderately suitable le 5 - Site not to be used				

	Marginal zone: This zone is reed dominated, with reduced woody component.			
PES description	Lower zone: Dominated by reedbeds and vegetation has been extensively removed.	exotic vegetatio	n, and largely cultivated and woody	
	Upper zone: Close to reference, but graz understorey and selected wood removal has	zing and tramplin s reduced the woo	g has removed large proportions of ody component.	
	C (66.6%)	Confidence	3.7	

H14.3.2 PES causes and sources

PES	Causes Sources		F/NF	Conf
	Reduced cover and abundance of indigenous riparian species.	educed cover and abundance of indigenous High levels of alien species invasion (especially in lower and upper zones).		
С	Changes to species composition and population structure of indigenous riparian species.	High levels of vegetation removal (grazing and trampling mainly) especially in lower and upper zones.	NF	4.5
	Expansion of reedbeds.	Narrowing of channel due to reduced flows.	F	

H14.3.3 Profile

Key:

- 1: D. mespiliformis (adults) (lower limit)
- 3: C. erythrophyllum (adults)
- 5: P. mauritianus (lower limit)
- 7: *P. mauritianus* (lower limit)
- 9: P. mauritianus & S. mucronata (upper limit)
- 11: P. mauritianus (upper limit)
- 13: C. erythrophyllum (adults)
- 15: D. mespiliformis (upper limit)

- 2: A. sieberiana (adults) (lower limit)
- 4: P. mauritianus (lower limit)
- 6: A. sieberiana (lower limit)
- 8: S. mucronata (lower limit)
- 10: F. sur (lower limit)
- 12: Cyperus (upper limit)
- 14: *F. sur*

H14.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
С	Negative	D	5 - 10 years	Presence of exotics species are high, with an occurrence of up to 40 - 60% on the Upper zone. If left unchecked will increase in proportion at the expense of indigenous riparian vegetation. Grazing and trampling from livestock, wood removal (selected <i>Breonadia, F. sur, Erythrina,</i> and <i>Sprirostachys</i> spp.) and cutting of footpaths is high. Expansion of reedbeds could continue to areas where open sand still exists.	3

H14.5 AEC: B

PES	AEC	Comments	
С	D	Increased presence of exotic species will lead to a decrease in woody vegetation (especially cover and abundance). Reedbeds will increase on marginal and lower zones.	3

H14.6 AEC: D

PES	AEC	Comments	
С	D	Increased presence of exotic species will lead to a decrease in woody vegetation (especially cover and abundance). Reedbeds will increase on marginal and lower zones.	3

H15 EWR 8 LOWER SAND (SAND RIVER)

H15.1 DATA AVAILABILITY

Data availability	Conf
Satellite images (Google earth) of the respective reach. Hydraulic cross-section (profile) at the site together with surveyed key vegetation points for setting flows. Data collected from field assessment in 2007. Aerial photos of site - 1944, 1965, 1974, 1984, 1997.	
Numerous postgraduate studies on the Sabie especially inside KNP. Previous IFR studies.	
Biomes of South Africa: Savanna (Rutherford & Westfall, 1986); Savanna (bushveld) (van Wyk & van Wyk, 1997) Savanna (Mucina & Rutherford, 2006).	4.5
Bioregions of South Africa: Lowveld (SVI 7) (Mucina & Rutherford, 2006). Vegetation Type: Undifferentiated bushveld and woodland (van Wyk & van Wyk, 1997).	
Maputaland-Pondoland principle region of plant diversity (van Wyk & van Wyk, 1997). WRC (2001): State of Rivers Report on the Crocodile, Sabie-Sand & Olifants River Systems.	

H15.2 REFERENCE CONDITIONS

Marginal zone

Sections that are characterised by unconsolidated alluvia will tend to be dominated by reedbeds (*P. mauritianus*), while sections characterised by cobble/boulder or exposed bedrock will tend to be dominated by grasses (*Cynodon dactylon*) and herbaceous aquatics (*Cyperus, Persecaria*, and *Ludwigia* species). Small proportion of the marginal zone will be woody (*Breonadia* and *Syzigium* species mainly).

Lower zone

Mix of tree and shrub dominated vegetation (*B. salicina*, *S. cordatum* and *S. guineense*, and *N. oppositifolia* mainly) where substrates tend to be more rocky or consolidated and reeds/open sand (*P. mauritianus*) where substrates tend to be unconsolidated.

Upper zone

Tree and shrub dominated mainly (*C. erythrophyllum*, *F. sycomorus*, *D. mespiliformis* with some *S. africana* expected in localised pockets).

Confidence: 3.5

H15.3 PRESENT ECOLOGICAL STATE

H15.3.1 Site suitability

Site Suitability for the Assessment of Environmental Flows						
Habitat availability Rate Motivation where applicable						
Presence/absence of the marginal zone.	0	Marginal completely present.				
Proportion of marginal zone that is able to be sampled.	0	Entire marginal zone was sampled.				
Channel morphology						
Channel bank stabilization. 0 No destabilization noted.						
Channel manipulation.	1	Unmanipulated.				
Profile distance too long to effectively conduct VEGRAI. 1 Entire profile assessed.						
Vegetation						

Occurrence of obligate, marginal zone riparian species.	0	Obligate riparian species abundant in marginal zone.
Occurrence of obligate, non-marginal zone riparian species.	0	Obligate riparian species abundant in non-marginal zone.
Occurrence of species that are (regional) indicators of the riparian zone, or wetness.		Obligates present, so unrated.
Recent fire/s at site.	0	No recent.
Exotic species at the site.	1	Present, but < 10% on all zones.
Left and right-hand banks have riparian vegetation in similar condition.	1	Similar banks into vegetation.
Able to obtain sufficient survey points of indicator species for flow requirements.	0	> 8 points per bank.
Plant species easily identifiable i.e. leaves or flowers present at time of site visit.	0	Identification was not a problem.
Hydi	raulic	control
Unnatural up/downstream control affecting site.	1	Upstream effect of low-level bridge minimal localised deposition.
Overall Site Suitability Rating	0.4	
Suitability rating:0 - Suite highly suitable1 - Site suitable3 - Site unsuitable4 - Site extremely un	nsuitab	2 - Site moderately suitable le 5 - Site not to be used

	Marginal zone: The zone has expanded as sedimentation occurs, since reeds have colonised and stabilised additional sand deposits. Marginal species composition is as expected, but reeds occur in greater proportions and abundance.					
PES description	Lower and Upper zone: These zones are impact, but reedbeds are more extensive t open sediment was expected.	close to reference han expected i.e.	e condition, with low alien vegetation a greater patchiness with reeds and			
	B (86.7%)	Confidence	3.7			

H15.3.2 PES causes and sources

PES	Causes	Sources	F/NF	Conf	
В	Reduced indigenous vegetation cover and changes to species composition.	Exotic vegetation impact low (<10%).	F	4	
	Expansion of reedbeds.	Narrowing of channel due to reduced flows.	NF		

H15.3.3 Profile

Figure H15 EWR 8: Riparian vegetation survey points used to assess flow requirements

Key:

- 1: S. cordatum/D. mespiliformis (upper limit)
- 3: Gymnosporia senegalensis/Phoenix reclinata (lower limit)
- 5: Combretum erythrophyllum
- 7: Cyperus sp (upper limit)
- 9: Persecaria (upper limit)
- 12: P. mauritianus (lower limit)
- 14: B. salicina (lower limit)
- 15: Combretum erythrophyllum (upper limit)
- 16: Periwinkle
- 18: P. mauritianus/Schoenoplectus (lower limit)
- 20: C. erythrophyllum/A. robusta recruits/E. crispa (upper limit) 21: L. capassa (lower limit)

2: D. mespiliformis (lower limit) 4: P. mauritianus (upper limit) 6: Lower/upper zone interface 8: P. mauritianus (lower limit) 10: water level

- 13: water level
- 17: Cyperus sp (upper limit)
- 19: Cyperus sp (lower limit)
- 22: D. mespiliformis (lower limit)

- 23: N. oppositifolia (upper limit).

H15.4 TREND

PES	Trend	Trend PES	Time	Reasons	Conf
В	Stable	В		Exotics, if left unchecked would increase in proportion at the expense of indigenous riparian vegetation, but the actions of WFW inside KNP appear to be ongoing and frequent enough to stabilize the site. Stability does however; depend on the continued action of Working for Water.	2.5

H15.5 AEC: C

PES	AEC	Comments		
В	B/C	Reduced flows and increased sedimentation will facilitate channel narrowing and a shift in vegetation as the marginal zone migrates. Reeds will colonise new sand and further aid channel narrowing, while reeds on the lower zone will remain. Species composition is unlikely to change. It is assumed that alien vegetation is kept at bay and does not increase.	2.5	

H16 REFERENCES

Mucina, L. and Rutherford, M.C. (eds). 2006. The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. National Biodiversity Institute, Pretoria.

Van Wyk, B. and Van Wyk, P. 1997. *Field Guide to Trees of Southern Africa*, C. Struik Publishing, Cape Town, South Africa.